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bstract

Reproducing the smooth vocal tract trajectories is critical for high quality articulatory speech synthesis. This paper presents an
daptive neural control scheme for such a task using fuzzy logic and neural networks. The control scheme estimates motor commands
rom trajectories of flesh-points on selected articulators. These motor commands are then used to reproduce the trajectories of the
nderlying articulators in a 2nd order dynamical system. Initial experiments show that the control scheme is able to manipulate
he mass-spring based elastic tract walls in a 2-dimensional articulatory synthesizer and to realize efficient speech motor control.
he proposed controller achieves high accuracy during on-line tracking of the lips, the tongue, and the jaw in the simulation of
onsonant–vowel sequences. It also offers salient features such as generality and adaptability for future developments of control
odels in articulatory synthesis.
2013 Elsevier Ltd. All rights reserved.
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. Introduction

There are mainly two types of synthesis methods in text-to-speech (TTS) applications: concatenative and articu-
atory synthesis (Birkholz, 2005). Concatenative synthesis uses the stored speech waveforms of phonemes or words
ronounced by the human speakers to generate intelligible output. Its applications are limited to the languages and
peakers available. In contrast, articulatory synthesis simulates the movements in the speech apparatus of human speak-
rs for the TTS application. It has a stronger physiological basis and is able to produce a larger number of utterances
han the concatenative method. In fact, the method offers additional benefits beyond TTS, in applications such as
he facial animation (Badin et al., 2002), the medical treatment of speech disorders (Kröger et al., 2008), and the
rticulatory-phonetic studies in automatic speech recognition (King et al., 2007).

However, it remains a challenging task to reproduce the vocal tract trajectories through automatic control in current

rticulatory synthesis research. A complete articulatory synthesizer usually includes three functional components:
n anatomical model, an acoustic model, and a control model. Studies on the anatomical and the acoustic models
ave developed rapidly in the past decades (Buchaillard et al., 2009; Birkholz et al., 2007; Cook, 1990), but there
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is a lack of study in the control model. The desired control model should be able to reproduce realistic articulatory
trajectories in different phonetic contexts and with different speaking rate. Existing control models often operate
manually in a codebook fashion, which applies a set of linguistic rules to define the articulatory targets such as the
velocity and the position profile of a particular speech sound (e.g., a phone). Such a synthesis-by-rule approach was
initially implemented in the cord-tract model of Ishizaka et al. (1975) and the task-dynamic articulatory model of
Saltzman and Munhall (1989). In their approach, each phone usually has one spatial target in the codebook. The
articulatory movements for the sequential phonetic strings such as syllables, words, and sentences, are generated by
interpolating and/or approximating the targets (Birkholz et al., 2011; Perrier et al., 2005). Different from the codebook
approach, Nelson (1983) suggested that the articulatory movements were the result of optimized control similar to that
of a second-order dynamical system. Löfqvist and Gracco (2002) supported the view, and they observed that a cost
minimization principle could well explain the trajectory curvature of the articulatory kinematics.

The main difficulty lies in the dynamics of speech motor control. In the literature, many methods have been proposed
to model the the positions and velocities of the speech articulators during speech production, for example, the task
dynamic model of Saltzman and Munhall (1989), the models of Perrier et al. (2003) and Buchaillard et al. (2009) based
on the Equilibrium Point Hypothesis (EPH) of Feldman (1986). However, the speech dynamics are highly non-linear
and contain many uncertainties, which are difficult to describe using the precise mathematical models. There is an urgent
need for more adequate modeling methods to realize efficient speech motor control. In this paper, we re-formulated
the articulatory dynamics using a mass-spring damper (MSD) in a 2-dimensional articulatory synthesizer. We used
the fuzzy neural networks (FNNs) to deal with the unmodeled uncertainties and non-linearity in an adaptive neural
controller. In contrast to using the fixed-structured neural networks for the non-linear modeling (Richmond, 2009),
the proposed controller embedded a learning algorithm and an adaptive control law to determine the structure and
the parameters of the neural topology simultaneously during off-line learning. In other words, FNNs learn the speech
dynamics, or the mapping between the input and the output, and store the information in the neural topology. During
on-line tracking, the controller estimated a series of motor commands from trajectories of flesh-points on the selected
articulators. Then it used these motor commands to reproduce the trajectories for the underlying articulators. We used a
set of consonant–vowel (CV) sequences to demonstrate the learning and the tracking process in the simulations. Then
the controller manipulated the MSD to reproduce the smooth trajectories in the selected articulators. Our experiments
showed that it achieved high accuracy during on-line tracking of the lips, the tongue, and the jaw in the CV sequences.

The rest of the paper is organized as follows. Section 2 introduces the background and the theoretical basis of speech
motor control. Section 3 formulates the articulatory dynamics in the MSD based 2-D vocal tract system. Section 4
describes the structure, the learning algorithm, and the adaptive laws of the proposed E-FNN controller. Section 5
describes the experimental settings and the simulation procedures. Section 6 discusses the results. Section 7 concludes
this paper.

2. Overview of speech motor control

In speech motor control, the equation of motion governs the dynamics of the articulators. It is analogous to the MSD
(Kröger et al., 1995; Perrier and Ostry, 1996; Kelso et al., 1986), which follows Newton’s law

u + Fe + Ff = Mz̈ + Bż + Kz, (1)

where M, B, and K are the mass, damping, and stiffness coefficients of the speech articulators (e.g., the tongue tip and
the lower lip) in the anatomical model of an articulatory synthesizer. Fe is the external force due to the gravity factor
and the air pressure inside the tract, and Ff is the friction force between the adjacent muscular structures, which can
be assumed to be negligible due to the saliva. We describe the articulators using the motion vectors, termed vocal tract
variables (TVs), where z, ż, and z̈ are the position, the velocity, and the acceleration parameters, respectively. u is the
input force or the activation level of the muscular structures which control the TVs. We refer to the set of muscular
activation forces as the motor variables (MVs).

In comparison, the task dynamic model of Saltzman and Munhall (1989) distinguishes three kinds of variables at

two levels: the activation coordinates at the inter-gestural level, and the model articulator coordinates (the actual spatial
position of the articulators) and tract-variable coordinates (the location and degree of constriction of the articulators) at
the inter-articulator level. In this paper, the MVs are analogous to the activation coordinates. The TVs are not replicates
of Saltzman and Munhall’s model articulator coordinates, nor are they the same as the tract-variable coordinates.
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nstead they are the pellet position/coordinates at the selected constriction locations on the articulators (more on these
ariables in Section 3).

The equation of motion describes the quasi-incompressibility of the speech articulators during the speech production
Kim and Gomi, 2007). It yields close-loop solutions by choosing the appropriate time-variant variables. For example,
he Equilibrium Point Hypothesis (EPH) of Feldman (1986) used the equilibrium positions as the time-variant variables,
he shift of which results in the movements of the articulators. Perrier and Ostry (1996), Perrier et al. (2003), and
uchaillard et al. (2009) applied the EPH control concept in a finite element model of the tongue, and solved the
ifferential equation using combined Newton-Raphson and Newmark method. In contrast, Saltzman and Munhall
1989) considered the stiffness coefficients as the time-varying variables. They used a pseudo-Jacobian inversion
atrix to calculate the gestural control parameters for the desired articulatory movements in the differential equation.
he concept still resembles the EPH method, since the stiffness directly affects the velocity with which the equilibrium

ength is restored (Boersma, 1998). The concept is also used in the articulatory synthesizer of Birkholz (2005), Kröger
t al. (1995, 2009). However, it requires explicitly defining the gestural scores and the activation intervals for the system
tate profile [ż, z] in the control model, which are highly error prone especially at the phonetic boundaries (Kelso et al.,
986). Another way to solve the differential equation is to use the time-varying input force functions to reproduce the
ystem state profile [ż, z], the velocity and position trajectories (Kröger et al., 1995). The coefficients M, K, and B
ssume values that are close to human tissues in the vocal tract. In this manner, the equation of motion in (1) simplifies
o an ordinary differential equation. For example, van den Doel and Ascher (2008) formulated a wall displacement

odel

p(x, t) = Mz̈(x, t) + Bż(x, t) + K�z(x, t), (2)

here the driving force is from the air pressure p inside the tube. Additional discretization techniques such as the
eap-frog scheme (Boersma, 1998) and the Newmark methods (van den Doel and Ascher, 2008) are then used to solve
he equation during articulatory and acoustic simulation. One major drawback of this approach is the high computation
ost which renders it inefficient for on-line articulatory control.

Moreover, the dynamic MSD system in (1) is highly non-linear and contains uncertainties which are difficult to
escribe using precise mathematical model. There are mainly three difficulties.

. Human vocal system consists of soft tissues as well as bony structures, e.g., the hard palate. Consequently, the MSD
system contains unmodeled variabilities in the M, B, and K parameters, which vary from speaker to speaker (e.g.,
physiological differences) and for the same speaker under different conditions (e.g., emotional states). The stiffness
of muscular tissues also changes during activation (Duck, 1990; Perrier et al., 2003).

. The articulatory movements are affected by the phonetic structure of continuous speech, which introduces unmod-
eled variabilities.

. During speech production, the modeling of constriction is not linear. Though the articulatory movements are smooth
between vowel targets, the transitions to/from the consonants such as plosives, nasals, and laterals, are not so. For
example, when the tongue tip hits the alveolar ridge during [d/t] production, the collision introduces points of
discontinuity in the vocal tract at the onset of the closure, rendering the model non-linear (Birkholz et al., 2011).

herefore, there is an urgent need for more adequate dynamic modeling methods to deal with the above unmodeled
ariabilities and non-linearity to realize efficient speech motor control.

Neural networks (NNs) have shown advantages in non-linear modeling of dynamic control systems. For example,
altzman and Munhall (1989) proposed to use Jordan’s recurrent neural networks (RNNs) (1986) to incorporate the

emporal dynamics and learning algorithm in the control model. Hirayama et al. (1993) applied NNs to learn the inverse
ynamics of speech motor control. More recently Fang (2009) used a general regression neural model to infer motor
ommands from the articulatory measurements. However, these are fix-structured NNs, which use a trial-by-error
pproach to determine the parameter and structure in the neural controller. As a result, the controller performance
s subject to the experimenter’s decision rather than the property of the dynamic system. In this aspect, NNs with

uzzy logic, or FNNs are more appropriate than the fix-structured NNs (Wang, 1997). They have been used to improve
peech motor control in articulatory synthesis. For example, Kröger et al. (2009) used self-organizing maps to learn the
otor commands and the tract variables from phonetic sequences, and obtained encouraging results in the articulatory

ynthesizer. FNNs have yet to reach their full potential.
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Previously we have introduced an adaptive neural controller, termed the generalized dynamic fuzzy neural network
(GD-FNN) controller (Wu et al., 2001; Er and Gao, 2003). The controller has shown excellent performance in terms of
tracking accuracy and computational efficiency for several non-linear dynamic systems with unmodeled variabilities,
e.g., an inverted pendulum, a robot manipulator (Gao and Er, 2003), and a drug delivery system (Gao and Er, 2005).
In this study, we applied the adaptive neural control model to reproduce the articulatory trajectories of the vocal
apparatus in a 2-dimensional (2-D) articulatory synthesizer. The GD-FNN infers knowledge about the articulatory
dynamics and stores the information in the neural structures and the fuzzy logics. The proposed control scheme is an
extended version of GD-FNN, referred to as E-FNN. It integrates the radial basis function neural network (RBF-NN),
the fuzzy inference network (FIN), and the recurrent neural network (RNN) in one neural topology. The recurrent
layer is added to the original GD-FNN to deal with the temporal dynamics in the articulatory speech patterns (Jordan,
1986). The complete E-FNN controller also embeds a learning algorithm and an adaptive control law to determine
the structure and the parameters of the neural topology simultaneously. Our main hypothesis is that it is possible
to deal with the uncertainty and the non-linearity in the mapping between the muscle activities, the MVs, and the
articulatory trajectories, the TVs, in speech motor control. Unlike the TVs, the MVs are usually hard to measure or
not completely retrievable in human speech production. In this study, the E-FNN learns to predict the MVs from the
TVs using the generalization abilities of fuzzy logics and NNs. We then couple the E-FNN model with a proportional
integral derivative (PID) controller to manipulate a MSD system to reproduce the continuous and smooth articulatory
trajectories of the desired consonant–vowel (CV) sequences. We test the tracking accuracy of the E-FNN controller on
electromagnetic articulography (EMA) data of the vocal tract in CV articulation.

3. Articulatory dynamics

The controllability canonical form for a 2nd order time-variant non-linear system is (Slotine and Li, 1991),

z̈(ts) = fn(z, ts) + gn(z, ts)u(ts) + dn(ts), (3)

where z = [ż, z] is the state vector, velocity and position, of the system, fn and gn represent the non-linearities of
the mapping from the input u to the output z, and d represents the uncertainties and external disturbances of the
dynamic system, and dn is the unmodeled uncertainties. If we further define the non-linear dynamic function fn(z, ts) =
f (z, ts) + �f (z, ts), and the control gain gn(z, ts) = g + �g(z, ts), where f and g are the nominal parts, �f and �g are
the unknown parts or the uncertainties of f and g (Lin and Li, 2012), the canonical form can be re-written as,

z̈(ts) = f (z, ts) + gu(ts) + d(ts), (4)

where d(ts) = �f (z, ts) + �g(zu(ts), ts) + dn(ts) is the unknown uncertainties. From the equation of motion of the
MSD system in (1) and the controllability canonical form in (4), we have

f = − B

M
ż(t) − K

M
z(t), (5)

and

g = 1

M
. (6)

Since g /= 0 for all �z, the system is controllable (Lin and Li, 2012; Slotine and Li, 1991; Gao and Er, 2003). Furthermore,
the function f and d are assumed to be bounded in human vocal system.

We focus on the control of the vocal tract including the lips, the tongue, and the jaw in a 2-D articulatory synthesizer,
as shown in Fig. 1, which was constructed by Mermelstein (1973) based on the X-ray image of a human speaker. The
vocal tract has elastic walls, which are analogous to the MSD. The TVs are the pellet points at the selected constriction
locations on the articulators, as shown in Fig. 1. The 12 TVs include the x–y coordinates of the tongue root (TRx,
TRy) relative from its neutral or resting position, the tongue body (TBx, TBy), the tongue tip (TTx, TTy), the lower lip
(LLx, LLy), the upper lip (ULx, ULy), and the lower incisor (LIx, LIy). The MVs represent the muscular forces, which

underly the TVs in the 2-D vocal tract. The 8 MVs cover one intrinsic tongue muscle: superior longitudinal (SL), which
retracts or flaps the tongue tip; four extrinsic tongue muscles: anterior genioglossus (GGa), posterior genioglossus
(GGp), hyoglossus (HG) and styloglossus (SG), which change the shape and position the tongue dorsum: body and
root; three facial muscles: masseter (MA) which raises the lower jaw, risorius (RO) and orbicularisoris (OO) which
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Fig. 1. Illustration of Mermelstein’s 2-D articulatory mesh and the location of vocal tract variables.

onstrict, round, and spread the lips. The vocal cords, shown as the glottis in Fig. 1, are not included in this model
or two reasons. Firstly the control of vocal cords is more effective with stiffness parameters than the MV parameters
Flanagan et al., 1975). Secondly the vocal cords can cause non-unique mapping between the TVs and the MVs because
t can compensate for vocal tract changes in speech production (Schroeter and Sondhi, 1994). For example, if we are
o model the simple voicing contrast for the [p/b] and the [t/d] pairs, additional control variables regarding the timing
f glottal excitation need to be specified in the vocal cords. Therefore, in the present model, it is not used as a control
ariable.

. Neural control scheme

As shown in Fig. 2(a), during off-line training, the proposed E-FNN model learns the inverse characteristics between

he input MV, u, and the output TV, z, in the dynamic MSD system. Since the exact MVs are unknown, and the parameters

, B, and K vary from speaker to speaker and for the same speaker in different phonetic contexts, the E-FNN controller
ses the reference MVs, ur, (details given in Section 5) and the desired TVs, zd, to learn the system non-linearities

ig. 2. Structure and data flow in the proposed fuzzy neural controller. (a) Off-line learning on the training data pairs (ur, zd). ur is the reference
otor variables, zd is the desired tract variables, and e is the tracking error. (b) On-line tracking of the desired articulatory trajectories zd in the MSD

ased vocal tract system. In the MSD block, uc is the retrieved control signal, D represents the uncertainties, and z is the output of the dynamic
ystem. In the E-FNN block, w is the weight parameter, and mf denotes the membership function (cf. Section 4.2).
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Fig. 3. Architecture of the extended fuzzy neural network.

and dynamics through an embedded learning algorithm. Using the training data pairs, the algorithm determines the
structure and the parameters of the E-FNN such as the number of hidden neurons and the weights systematically and
automatically through an iterative supervised learning (Section 4.2). During on-line tracking, as shown in Fig. 2(b),
instead of looking for exact MVs, the PID controller generates the compensation output and the tracking error at
each sample time for the overall control system. It embeds an adaptive control law, which uses the error rate as the
weight update criteria and stores the system dynamics and the mapping functions in the E-FNN (Section 4.3). In this
manner, the E-FNN controller infers the muscular activation patterns from trajectories of flesh-points on the selected
articulators.

4.1. E-FNN structure

The E-FNN architecture is shown in Fig. 3, which has a total of five layers. It incorporates the Takagi–Suegeno–Kang-
type fuzzy inference system, the RBF-NN, and the RNN in a connectionist structure, which is extended from the
GD-FNN (Wu et al., 2001; Er and Gao, 2003; Gao and Er, 2005). We add the recurrent layer to account for the
temporal dynamics in speech motor control (Jordan, 1986). Nodes and links in layer one and two act as a fuzzifier,
while nodes and links in layer four act as a defuzzifier. We use x

(l)
i to denote the ith input of a node in the lth layer, and

y
(l)
i to denote its corresponding output in layer l. The function of the node in each layer is given in the following.

• Layer 1: The input layer. Each node transmits the input variable to the next layer directly:

y
(1)
i = x

(1)
i , i = 1, . . . , Ni. (7)

For the inverse control model, Ni = 36, which includes the position, velocity and acceleration of the 12 TVs: [z̈, ż, z].
• Layer 2: The membership function layer. It specifies the degree to which an input variable belongs to a fuzzy set

using Gaussian membership function:
y
(2)
i = exp − (xi − cij)2

σ2
ij

, (8)

where cij and σij, i = 1, . . ., Ni, j = 1, . . ., Nj, are the center and the width of the Gaussian function for the jth term in
the ith input variable. These parameters are obtained in the learning procedure.
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Layer 3: The rule layer. The number of nodes indicates the number of fuzzy rules. The output of a rule node indicates
the firing strength of its corresponding rule, defined as

y
(3)
j = y(6)

Ni∏
i=1

x
(3)
i , (9)

where y(6) is the output of the recurrent layer.
Layer 4: The weight layer. The TSK-type fuzzy output weights are obtained in the structure learning procedure. The
node output y

(4)
k : k = 1, . . ., Nk is the weighted sum of the incoming signals, which is a fuzzy “OR” operation:

y
(4)
k =

Nk∑
k=1

x
(4)
k =

Nj∑
j=1

y
(3)
j wjk, (10)

which integrates the fired rules on the same consequence neuron. The weight is:

wjk = K0 +
Ni∑
i=1

Kixi, (11)

where K’s are manually-set and real-valued parameters.
Layer 5: The defuzzification layer. Each node in this layer corresponds to one output variable. The output function
is defined as

y(5)
o =

∑Nk

k=1x
(5)
k wok∑Nk

k=1x
(5)
k

, (12)

where x
(5)
k = y

(4)
k , wok is the link weight from the kth term in layer four to the oth output variable in layer five, o = 1,

. . ., No, and No = Nk. In the control model, No = 8, which is the number of the MVs in the dynamic MSD system.
The neural function generates a output in [0, 1], which is the normalized activation level of the MVs.
Recurrent layer: it calculates the firing strength of the recurrent variable rk = y

(4)
k to the rule layer. The number of

recurrent nodes is the same at that of the output node in layer four. The node acts as a delay line to account for the
contextual information in the temporal patterns. The node function is defined as

y
(6)
k = 1

1 + e−rk
. (13)

The function can be interpreted as a global membership function, which “remembers” the history of discourse in
the recurrent variables (Jordan, 1986). The recurrent outputs are fed back to the rules nodes in layer three, which
stores the firing history of the fuzzy rules.

.2. Learning algorithm

The learning algorithm enables simultaneous learning of the E-FNN structure and parameter, which was proposed
nd implemented in our previous studies (Wu et al., 2001; Gao and Er, 2003; Er and Gao, 2003). Structure learning
etermines the number of membership functions in layer two and the number of fuzzy logic rules in layer three.
arameter learning determines the Gaussian parameters in layer two and the link weights in layer four, i.e., the
embership function y

(2)
i (cij, σij), and the weight parameters wjk. It uses the semi-closed fuzzy set for membership
earning and the linear least square method for weight learning. Structure learning automatically creates or deletes
uzzy rules according to the system error and the error reduction ratio in the E-FNN controller. Learning repeats for
ach input and output data-pair. The parameters and the structure of the E-FNN are tuned automatically on the training
ata. Initially there are no fuzzy rules in layer three, and they are created or deleted automatically as the learning
roceeds. Detailed mathematical descriptions of the learning algorithm, convergence analysis, and stability analysis
f the FNN based controller in dynamic modeling are given in (Gao and Er, 2003).
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4.3. Adaptive control law

After obtaining the initial value of the weight vector wij during the learning process, the E-FNN based controller
embeds an adaptive control law to adjust the vector to compensate for the modeling errors in the learning algorithm
(Gao and Er, 2005). In this study, the E-FNN controller is connected with a PID controller via adaptive control, as
shown in Fig. 2(b). The PID controller serves as a feedback compensator which also stabilizes the inverse dynamic
modeling (Gao and Er, 2005; Lin and Li, 2012). The adaptive control law is designed as follows,

uc(ts) = uE-FNN(zd, ts) − uPID(ts). (14)

The PID control output is given by,

uPID = Kpe(t) + Ki

∫
e(t)dt + Kdė(t), (15)

where e is the tracking error: e(t) = zd − z between the desired target position and the displacement of the MSD. The
matrix K = [Kp, Ki, Kd] contains real numbers, and the proper choice of K affects the convergence speech of the tracking
performance. The adaptive law adjusts the weight vectors in layer three and four of the E-FNN to minimize the square
error E between the desired target position and the estimated position,

E(ts) = 1

2
u2

PID. (16)

The discrete gradient method is used to minimize E. The adaptive law of the weight vector is derived as (Wu et al.,
2001),

�W = −η
δE

δW
(17)

= −η
δE

δuS-FNN

δuS-FNN

δW
(18)

= −η
δ 1

2 (uc(ts) − uS-FNN(ts))

δuS-FNN

δuS-FNN

δW
(19)

= ηuPID(ts)φ(zd, ts) (20)

where η > 0 is the learning rate.

5. Simulation

Simulation includes two stages: off-line learning and on-line tracking. In the first stage, the learning algorithm
decides the initial weight parameter and the fuzzy rules of the E-FNN topology. It models the inverse dynamics
between the motor commands and the tract variables. For this stage, we need to train the E-FNN on parallel MV and
TV data. Ideally the training data consist of MVs and TVs measured on the human speech apparatus, such as the
electromyographic (EMG) and the EMA recordings. The EMG recordings describe the level of muscular forces in the
EPH model, while the EMA recordings describe the corresponding articulatory movements.

5.1. Data preparation

In this study, we used the CV sequences from the multichannel articulatory (MOCHA) database, which consists of
two speakers: one male (MSAK0) and one female (FSEW0), each uttering 460 TIMIT sentences (Wrench, 1999). 807
CV syllables are available in the training data. Each CV sequence has a syllable initial plosive (with or without stress)
for every combination of the vowels [ɑ, i, e, ɒ, u] and the plosives [p/b, t/d, k/g] in the pilot study. The EMA data in

MOCHA records the movements of the articulators, or the 12 TVs. Similar to Mermelstein’s 2-D model, the bridge of
the nose and the upper incisor are taken as the reference point in the x–y coordinates (Browman and Goldstein, 1992).
The trajectory vectors are z-normalized to have zero mean and unit variance, similar to Richmond (2009). The EMA
data have at a sampling rate of 500 Hz.



G. Huang, M.J. Er / Computer Speech and Language 28 (2014) 163–176 171

Table 1
Motor variables in the vocal tract and their reference activation levels, ur, in the plosive–vowel sequences.

Tongue Jaw Lips

GGa GGp SG HG SL MA OO RO

p/b 0 0 0 0.5 0 0 1 1
t/d 0 0 1 0 1 0 0 0
k/g 1 1 0 0 0 0 0 0
ɑ 1 0 0 1 0 0 0 0
i 0 1 0 0 0 1 0 1
ɒ 0 0 1 0 0 0 1 0
u 0 1 1 0 0 1 1 0
e 0 0 0 0 0 0.5 0 0
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Reliable EMG data are usually difficult to obtain in articulatory studies, for example, through needle insertion (Baer
t al., 1988). In their experiments, Baer et al. (1988) observed that the tongue muscles, GGa, GGp, SG, and HG have
istinctive level of EMG activation for the cardinal vowels in [pVp] sequences. For example, a single threshold of EMG
evel can distinguish a front vowel from a back vowel, and each vowel group has consistent activation patterns. The
laim was supported by Buchaillard et al. (2009) in the modeling of tongue muscles for cardinal vowel production. To
his end, we use an alternative set of reference MVs derived from linguistic studies and the existing EMG recordings
o initialize the learning process. As shown in Table 1, each phone represents a cognitive linguistic unit. It corresponds
o the motor activity of the muscles, which are normalized to the [0, 1] interval to suit the NN input. For example, GGa
s activated (=1) for the front vowel [ɑ], GGp for the high vowels [i] and [u], SG for the back vowels [ɒ] and [u], and
G for the low vowel [ɑ]. To reduce the variability of jaw positions, the MA activation is lower for the low vowel [ɑ]

nd [ɒ] than for the high vowels [i] and [u]. For the plosive pairs, OO and RO is activated for the labial [p/b], SL and
G for the alveolar [t/d], GGa and GGp for the velar [k/g].

During on-line tracking, the E-FNN controller retrieves the muscular activations in the CV sequences and reproduces
he desired articulatory trajectories. We used a step function to simulate the muscle activation from the consonant to
he vowel. The reference MVs in Table 1 are then updated by the PID compensator on the phonetic segments. The
ff-line learning in this study is analogous to the babbling stage in human speech acquisition while the on-line tracking
orresponds to the imitation stage (Kröger et al., 2009; Bailly, 1997).

.2. Off-line training

The E-FNN learning algorithm operates at a sampling rate of 100 Hz. The MOCHA training data are divided
andomly into five sets, four of which are used for off-line training, the other one used for on-line tracking. The
tructure and parameter of the E-FNN are determined simultaneously on the four training sets of MV and TV data
airs. Using the learning algorithm, a total number of 23 fuzzy rules are created after training. Fig. 4 shows that the

oot mean square error (RMSE) converges after training on 250 samples.

Fig. 4. Average RMSE rate of the fuzzy neural controller on MV inversion using the MOCHA training data.
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Table 2
RMSE of the estimated articulatory trajectories in comparison with the EMA recordings.

RMSE

z (mm) ż (mm/s)

ULx 0.67 0.52
ULy 1.20 0.81
LLx 0.75 0.66
LLy 1.04 0.98
LIx 2.07 1.36
LIy 1.45 1.13
TTx 1.65 1.02
TTy 2.53 1.64
TBx 1.97 1.56
TBy 1.90 1.58
TRx 2.04 1.74
TRy 2.03 1.55
Average 1.608 1.213

5.3. On-line tracking

The trained E-FNN estimates the MVs given the desired articulatory trajectories. It couples with the PID com-
pensator for on-line adaptive control of the MSD system. The controller manipulates the MSD to infer the muscular
activation patterns and to reproduce the desired articulatory trajectories in the 2-D articulatory synthesizer. Mermel-
stein’s 2-D vocal tract model with a tract length of 17.5 cm is divided into 89 tube sections, with a uniform length of
�x = 1.966 × 10−3 m and a thickness of �y = 1 ×10−2 m (Mermelstein, 1973; Boersma, 1998). The tube wall prop-
erty is measured in the relax cheeks of a human adult speaker (Ishizaka et al., 1975; Birkholz and Jackèl, 2004),
M0 = 21 kg/m2, B0 = 8000 kg/m2 s, K0 = 845, 000 kg/m2 s2. The mass, damping, and stiffness parameters of the MSD
manipulator in (1) are calculated as:

M = M0�x�y = 4.129 × 10−4 kg, (21)

B = B0�x�y = 0.157 kg/s, (22)

K = K0�x�y = 16.615 kg/s2. (23)

The system state profile for the neutral or resting position are set as ż = 0, and z = 0. The gains of the PID compensator
are set as Kp = 25, Ki = 30, and Kd = 5. The learning rate is η = 0.005.

6. Results and discussion

6.1. Articulatory trajectories

Smoothness is a main property of human speech articulation. We compare the reproduced articulatory trajectories
in the proposed controller with the recorded EMA data of human speakers. Table 2 summarizes the RMSE of the
controller during on-line tracking. The controller is able to manipulate the MSD and reproduce the desired position
and velocity trajectories with high accuracy. Some TVs such as LI, TT, and TR demonstrate relatively higher error
rates than others in Table 2. The observation suggests that the alveolar and the velar plosives possess a large amount
of uncertainties in the CV sequences. In articulatory synthesis, the plosives are often independently generated using
additional energy source at the constriction of the vocal tract during acoustic modeling (Birkholz et al., 2011). In
practice, many researchers have suggested to reduce the degree of freedom or the error-prone TVs to increase the

system efficiency (Birkholz, 2005; Ogata and Sonoda, 2003). For example, the jaw movement is considered as a
secondary feature that smoothes the formant patterns during vowel production.

Treated as an inversion mapping model, the E-FNN is comparable to the trajectory mixture density network (TMDN)
of Richmond (2009). Both models apply NNs to calculate the output probabilities based on the input vectors. In other
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Fig. 5. The characteristics of motor activation and energy consumption in the OO and HG during [ɑ] reproduction. Upper panels (a) and (d) plot
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he reference control signal ur (dashed line) and the inferred control signal uc (solid line) in the fuzzy neural controller. Middle panels (b) and (e)
lot the control signal of the E-FNN, uE-FNN, and that of the PID compensator, uPID, for the MSD system. Lower panels (c) and (f) plot the control
ffort or the energy consumption in the MSD system.

ords, they use NNs to model the conditional probability density of the articulatory trajectories. However, there are
few differences. Firstly, the E-FNN maps between the motor variables and the articulatory trajectories, while the
MDN maps between the acoustic parameters and the articulatory parameters (i.e., priors, means and variances of

he articulatory trajectories). They deal with different sets of feature vectors. Secondly, the E-FNN uses the recurrent
eurons to account for the speech dynamics across the input feature vectors. Instead the TMDN uses a context window
10 frames), which is less effective than the recurrent layer. The effects of recurrent layer versus the context window
ave been investigated and reported by Schroeter and Sondhi (1994). Another major difference is the use of fuzzy
ogics to deal with the speech uncertainties and non-linearity in the proposed E-FNN model. Instead Richmond’s
MDN model uses the fix-structured NNs. The later suffers when the training data is sparse, which is usually the case

n speech data. Therefore, E-FNN attempts to revive the potentials of NNs using fuzzy logics in this speech study.
n the literature, many methods have been proposed to model the non-linearity in the inversion mapping, and their
ccuracy are very similar (Toda et al., 2008). However, there is a lack of study on the underlying motor variables which
auses the vocal tract shape changes and the variability in the surface acoustic-phonetic events. In future studies, we
re interested to apply the E-FNN structure for the inversion mapping experiments in comparison with other existing
ethods.

.2. Muscular activations

For adaptive control, it is beneficial to extract the underlying articulatory commands, the MVs, to explain the
ynamics of the TVs. Fig. 5 shows the motor control signals of two MVs, OO and HG, in the proposed controller for

he reproduction of [ɑ] sequence. Fig. 5(a) and (d) plots the reference control signal ur (dashed line) and the inferred
ontrol signal uc (solid line), where uc = uE-FNN − uPID (Section 4, (14)). Fig. 5(b) and (e) plots the control input
f the E-FNN, uE-FNN and that of the PID compensator, uPID. The proposed E-FNN controller demonstrates better
erformance than the linear compensator in terms of inversion accuracy. The motor activation data agrees with the
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measured EMG data of Baer et al., where the phones have distinctive targets in the control space (Baer et al., 1988).
Four things are observed in the data.

1. The motor activation resembles the step response in the MSD. Ogata and Sonoda (2003) have previously used
time-invariant linear systems excited by impulse trains to reproduce the velocity profiles of the speech articulators,
which resembles the idea of motor inversion in this study.

2. The delay between the MV onset and the TV onset (at the boundary of the gate-like reference control signal) is
roughly 30–70 ms, which corresponds to the reaction time from muscle activation to articulatory motion in human
speech production (Birkholz et al., 2011).

3. The controller is able to model the non-linearities of the articulators during CV production, which is evidenced by
the smooth HG activation curve from [b] to [ɑ].

4. In the articulatory synthesis model, the controller moves the articulator back to the neutral position without
oscillation, which mimics the human speech articulation (Saltzman and Munhall, 1989; Perrier and Ostry, 1996).

6.3. Speech motor control for articulatory synthesis

The control model can be integrated with the anatomical and the acoustic models in a full articulatory synthesizer for
TTS applications. However, the control model needs to specify the prosody information besides the phone sequences,
such as the speaking rate in the input text. One difficulty is that the mapping from the articulatory trajectories to the
acoustic sound is not strictly “one-to-one”, where there can be more than one vocal tract-cord configuration that produce
the same acoustic sound in the synthesis system. The issue can be simplified by balancing the trade-off between the
articulatory effort and the acoustic distinctiveness using an optimal control strategy (Kröger et al., 2009; Perrier et al.,
2005). For speech motor control, the EMG measures are the combined results of efferent and afferent influences from
the biomechanical properties of the muscular structures (Buchaillard et al., 2009; Perrier et al., 2005). The muscular
forces can alter the position and velocity of the articulators. In the proposed controller, we are able to examine the
excitation pattern and calculate the input energy of the dynamic MSD system,

E =
∫ ts

t0

u(t)ż(t)dt, (24)

where u(t) is the input force, uc, ż(t) is the velocity of the tract wall at time t, and ts is the sampling time. Fig. 5(c) and (f)
plots the energy consumption in joules (J) of two MVs, OO and HG, during [ɑ] production. Energy rises abruptly for
OO in the lips when producing the labial plosive [b], but the overall measure is lower compared to HG when producing
the low vowel [ɑ].

In the proposed controller, it is possible to calculate the overall control effort of the MVs in the articulatory
synthesizer, where a “minimum energy” criterion can be embedded for optimal control (Kawato et al., 1990). The
criterion is analogous to the speaker-oriented “minimum articulatory cost” in the functional phonology of speech
production, where the speaker seeks to minimize the articulatory effort while maintaining the distinctiveness of the
acoustic sounds during speech production (Browman and Goldstein, 1992; Boersma, 1998). However, the control
energy in Fig. 5(c) and (f) are only relative measures since the MVs are normalized to [0, 1]. For example, the activation
of GGp(= 1) exerts a force of 25.82 N during [i] production, while the activation of SG(= 1) exerts a force of 6.9 N
(Buchaillard et al., 2009). If used for optimal speech motor control, the MVs should have different prominence. However,
Perrier et al. (2003) argued that the optimized control is not necessary for the smoothly varying articulatory movements.
They also showed that the bio-mechanical characteristics of the speech articulators alone can answer for such kinematic
property. In this study, the MVs are extracted for the 2-D articulator with MSD based tube wall. Therefore, it has limited
capability when evaluating the optimal control strategies. Nonetheless, the proposed controller is the first step toward
an automatically controlled articulatory synthesizer. The inferred MVs can also provide an alternative set of motor

features to describe the acoustic-phonetic events for improved speech recognition. For example, Mitra et al. used
the articulatory synthesizer to prepare a codebook of acoustic-to-articulatory data pairs, and they showed that the
inferred articulatory features increased the robustness toward noise contamination and speaker variations in the speech
recognition systems (Mitra et al., 2011). We are writing another paper using the articulatory based features in speech
recognition.
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. Conclusion

The shape, position, and movement of the articulators are the immediate targets of human speech production
Saltzman and Munhall, 1989; Kelso et al., 1986). Reproducing these smooth and natural trajectories is critical for
igh quality articulatory speech synthesis. This paper presents an adaptive fuzzy neural controller, which tracks the
easured articulatory trajectories in the form of TVs and infers the underlying muscular excitation patterns in the form

f MVs. Major characteristics of the proposed adaptive fuzzy neural controller are as follows.

. The E-FNN controller models the inverse dynamics between the motor commands and the tract variables in an off-
line mode, where the structure and parameters of the neural topology are automatically and dynamically determined
on the speech data.

. The controller deals the uncertainties and the non-linearities in the MSD system using an adaptive control law.

. Compared to the fixed structured NNs, the self-adaptation and learning ability of the E-FNN controller is more
adequate to model the dynamics of the articulators.

he proposed controller demonstrates good tracking performance on the CV sequences. It reproduces the smooth and
ell-shaped articulatory trajectories, and it retrieves the motor activations patterns in the vocal tract. The mapping
haracteristics between the MVs and the TVs are useful for speech motor control in articulatory synthesis, they are
lso useful for applications in automatic speech recognition.
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