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Abstract—This paper presents a deep neural network-
conditional random field (DNN-CRF) system with multi-view
features for sentence unit detection on English broadcast news.
We proposed a set of multi-view features extracted from the
acoustic, articulatory, and linguistic domains, and used them
together in the DNN-CRF model to predict the sentence bound-
aries. We tested the accuracy of the multi-view features on
the standard NIST RT-04 English broadcast news speech data.
Experiments show that the best system outperforms the state-
of-the-art sentence unit detection system significantly by 13.2%
absolute NIST sentence error rate reduction using the reference
transcription. However, the performance gain is limited on the
recognized transcription partly due to the high word error rate.

I. INTRODUCTION

Automatic speech recognition (ASR) usually produces no
punctuation in the output transcriptions, which makes it diffi-
cult for human to read and for text processing in downstream
natural language processing (NLP) modules. So automatic sen-
tence unit detection (SUD) serves as an important connection
between ASR and NLP [1]. The goal of SUD is to detect
the location of the sentence boundaries, or tag the word at
the sentence end, in the raw text. There are mainly three
types of full sentences, i.e., statement (‘.’), question (‘?’),
and exclamation (‘!’) in English. At a lower level, speech
boundary types such as comma (‘,’) and incomplete (‘...’)
marks are predicted [2]. They only account for the substitution
error during the standard NIST evaluation. At a higher level,
speech boundary types such as dialog and story boundaries
are predicted [3], [4]. In this study, we focus on the SUD task
of the three full sentences on English broadcast news (BN)
data. BN is more challenging and interesting to segment than
conversational speech, as the latter is usually shorter and has
separate channels [5]. Though SUD is a tagging task, the ex-
isting NLP tagging tools are usually not directly applied to the
speech transcriptions to detect the sentence boundaries. There
are two main reasons [2], [6]. Firstly the spoken language
uses a speech syntax that is different from the written text.
For example, human speech often contains disfluencies such

as repairs, false starts, and/or repetitions [2], [7]. Secondly the
ASR output contains errors, especially for spontaneous speech.
For example, BN data often contains both anchor speech
and noisy speech between reporters and interviewees on the
street. The errors in the ASR transcriptions will degrade the
performance of the standard NLP taggers that are trained on
written text. Moreover, spoken language contains knowledge
sources that are not available in written text. These knowledge
sources can help tackle the above difficulties in SUD. In the
literature, conventional SUD systems use word-level and/or
phone-level prosody features [8] together with the text in
a statistical classifier such as, maximum entropy models[9],
confusion networks [10], hidden Markov model (HMM), and
conditional random field (CRF) [11] . The prosody features
are usually heuristically defined. For example, Shriberg et al.
extracted over 200 prosody features for sentence and topic
segmentation in an HMM framework, and they obtained good
results [12]. Ref. [2] combined the above prosody features with
part-of-speech tags, and achieved state-of-the-art performance
on English RT-04 data.

In recent years, there is trend to study human speech in both
the production and the perception domains [13], [14]. Arora
and Livescu described the concept of multi-view features for
phonetic recognition in [13] . They described the two views
with both the acoustic and the articulatory data, where the
latter is available for a limited amount of training data, but
not at test time. Their intuition is that the articulatory data
provides additional information about the linguistic content in
the two views. The articulatory dynamics describe the smooth
and continuous movements in the vocal tract, which induce
the acoustic variability of human speech. Compared to the
acoustic features, the articulatory features are slow varying,
and they are constrained by the physiological capacity of
the human speech apparatus. This is especially useful when
dealing with sentence boundary events [15]. In the absence of
actual articulatory data, various methods have been proposed
to predict the articulatory trajectories from acoustics. Recent



success of DNN based acoustic-to-articulatory inversion, or
speech inversion has also motivated us to exploit the potential
of adding production knowledge in the SUD task. Currently
the DNN based speech inversion system in [16] obtains mean
square error rate as low as 0.83 mm on the x-y coordinates
of tongue and lips on the MNGU0 corpus. Other techniques
have also obtained around 1 mm error using HMM [14] and
trajectory mixture density network (TMDN) [17], etc.

In this study, we apply the multi-view learning [13], where
multiple views of data are available for training but possibly
not for testing to the SUD task. We propose a set of multi-view
features extracted from the acoustic, articulatory, and linguistic
domains, and use them together in the DNN-CRF model to
predict the sentence boundaries. The hypothesis is that the
articulatory data may provide additional or complementary
information about speech dynamics that are not available in
other knowledge sources. We also implement a joint DNN-
CRF model to segment English broadcast news into struc-
tured sentences 1. This paper uses the multi-view features to
the DNN-CRF, and compares the contributions of different
features on speech inversion and sentence segmentation task.
The proposed system outperformed the state-of-the-art system
in [2] on English RT-04 speech corpus by 13.2% absolute
NIST error rate on the reference transcription. The motivation
is that the combined use of multiple production/perception
knowledge sources on the linguistic content will improve the
representation of sentence structures in spoken language. To
our knowledge, this is the first time articulatory features have
been used in SUD.

The rest of the paper is organized as follows. Section II
describes the multiple knowledge sources and the DNN-CRF
model for SUD. Section III describes the experimental setup
and evaluation metrics. Section IV analyzes the results in
comparison with the state-of-the-art SUD system. Section V
concludes the paper.

II. METHOD

A. Multi-view Features

We extract the proposed multi-view features from the pro-
duction, the perception, and the linguistic domains, which are
closely related to the sentence structure in spoken speech. The
basic multi-view features are consisted of 54 acoustic features
(AcFs), 108 articulatory feature (ArFs), 162 prosody features
(PFs), and 8 linguistic feature (LF), including 5-gram, part-of-
speech (pos) tag, chunk (chk), and named entity (ne) tag, The
four types of features and their relations to the spoken speech
and the written text are shown in Fig. 1.

Prosodic View: The PFs used in [2], [12], and [18] consists
of four groups of cues: pitch, energy, duration, and binary
features such as speaker turn change or channel change. These
studies have shown that the PFs are very effective in SUD on
English BN data. We extracted the same set of 162 PFs as
the baseline features. The PFs are derived with heuristically
defined rules that are closely related to sentence boundaries.

1Some of our results on the DNN-CRF model were reported in [18]

Fig. 1: Illustration of the multi-view speech features: acoustic
feature (AcF), articulatory feature (ArF), prosody feature (PF),
and linguistic feature (LF), including part-of-speech (pos) tag,
chunk (chk) tag, and named entity (ne) tag.

For example, pause duration before and after a word, stylized
pitch/energy track, and speaker turn changes are primary cues
for SUD [2], [12]. In the SUD system, the PFs of the word
immediately preceding and following the boundary, or within
a window of 20 frames (200 ms, empirically determined)
before and after the boundary are extracted at each inter-word
boundary. We used an open source automatic tool based on
Praat to extract the prosodic features, as described in [12].

Acoustic View: However, PFs are mostly static descrip-
tions of the pitch/energy/duration features in the word inter-
vals. They may under-represent the dynamics in spontaneous
speech, e.g., BN data [19], [20]. To preserve such dynamics,
we used auto-correlation method to track 6 basic AcFs: the
energy, perceived pitch, and formants (F1 to F4) of the speech
signal. The AcFs are estimated over 15 msec windows with a
frame rate of 200 Hz, which also matches the electromagnetic
midsagittal articulography (EMA) rate for speech inversion to
extract the ArFs.

Articulatory View: Moreover, the dynamics in the AcFs are
rooted in the dynamics in the production domain, i.e., the
movements of the speech articulators. There is a close link
between articulatory and acoustic representations of speech,
where the syntactic structure of spoken sentences are directly
constrained by the articulatory configurations[21], [22]. For
example, a normal spoken sentence is usually less than 20
words long, as the lungs have limited capacity of air. In the
proposed SUD system, we used a DNN inversion module to
extract 12 basic ArFs from the acoustic speech signal and
used them in the SUD task. The basic ArFs include the x-y
coordinates of the 6 articulators, the upper lip, lower lip, lower
incisor, tongue tip, tongue blade, and tongue dorsum. The
hypothesis is that the articulatory dynamics are slow varying
and provide additional production knowledge. The DNN was
trained to estimate articulatory trajectories from input speech.
The training data is a corpus of 460 English TIMIT sentences
with EMA and microphone recordings. Previous studies have
found that deep architectures give more accurate predictions
than shallow ones, as the former has a higher capability to
represent the mapping relationships between the input and the
output. The best model obtained an average RMSE of 0.94



mm (with random initialization) on the MNGU0 test data [17],
[23]. We used a similar DNN module to invert the ArFs, albeit
much simpler features and structure, and obtained 0.99 mm
accuracy on the same MNGU0 test data. We will elaborate
more on the experimental settings and results in Section IV.

The sentence structure in spontaneous speech directly in-
fluences the continuity and dynamics of these features across
word boundaries. Therefore, the derivatives of the above AcFs
and ArFs are calculated to prepare a set of fixed-length feature
vectors for DNN input in the proposed SUD system. We
generate the word-level AcFs and ArFs from their previous
frame-level measurements using two tiers of measurements.
Tier one derivatives are the [mean, std, max, min, median] of
the original features. Tier two derivatives are the [mean, std,
max, min] of the moving slope and the 9th order polynomial
fit of the original features. The resulting AcF is 6× 18 = 108
dimensional, while the ArF is 12× 18 = 216 dimensional for
each word interval.

Linguistic View: We used the textual, syntactic, and seman-
tic features, namely the linguistic features (LFs) for SUD. The
textual features, or the word sequences are the basic linguistic
cues available either from the ground-truth or reference tran-
scriptions (denoted as REF) or the ASR transcriptions (denoted
as ASR). In fact, REF can be viewed as the ASR output with
100% word recognition rate. We used 5-grams as the textual
features, i.e., < wi−2, wi− 1, wi, wi+1, wi+2 >, where wi

is the ith word in the word sequence that will be tagged.
Parsing uncovers the word relationships in the sentence, where
the syntactic and semantic features are tightly connected to
the sentence structure, i.e., the grammar in spoken language.
[1]. Therefore, besides the textual transcriptions, we used the
following three types of syntactic and semantic features: part-
of-speech (POS) tags, chunks, and named entity tags. The
POS tags and chunks have been shown to improve SUD
performance on English data in the stat-of-the-art SUD system
[2]. In addition, named entity tags are important cues for
sentence boundary in BN data, where the reporters usually
finishes their report with their names at the end of the news
segment. In Section IV, we will show that the LFs can improve
the SUD consistently. We used the existing SENNA tagger
[24] 2 in the proposed SUD system.

B. Sentence Unit Detection Method

SUD is a classification task, i.e., the system needs to
determine whether there is a sentence boundary label at each
inter-word boundary. So the inter-word positions are labeled as
either sentence unit (SU) or non-sentence unit (NS). Previously
Liu et al. implemented the HMM system in [2], which
combines the textural features in the n-gram model and the
prosody features in the decision tree (DT). In particular, the ob-
servations consist of words and prosodic features. The prosody
features are modeled as observation likelihoods attached to
the n-gram states of the HMM [3], [5]. However, HMM has
two main drawbacks [2]. First, the standard training methods

2Online at http://ml.nec-labs.com/senna/

maximize the joint probability of observed and hidden events,
as opposed to the posterior probability of the correct hidden
variable assignment given the observations, which is a criterion
more closely related to classification performance. Second, the
n-gram model makes it difficult to use features that are highly
correlated, which would make robust estimation difficult. e.g.,
for ASR transcriptions. Liu et al. further implemented a CRF
based SUD system to compete with the HMM system. CRF
differs from HMM in that its training objective function is
the conditional likelihood rather than the joint likelihood [25].
HMM does not maximize the posterior of the correct tags,
while the CRF directly estimates the posterior boundary label
probabilities. The conditional likelihood is closely related to
the individual event posteriors for classification, which enables
the CRF model to explicitly optimize discrimination of correct
from incorrect event tags. Previous studies have shown that
CRF can outperform the hidden-event LM baseline by 10%
relative on the REF transcriptions and by up to 25% relative
on the ASR transcriptions [26]. However, one drawback is that
the CRF takes longer to train than the HMM, especially when
the number of features becomes large.

In this study, we replaced DT with DNN to model the
prosody features. The proposed SUD system is shown in Fig.
2. The input of the DNN is the prosodic/acoustic/articulatory
features: PFs, AcFs, ArFs and the output is the posterior of the
features. The LFs are used together with the DNN posterior as
input to the linear-chain CRF for boundary detection. In other
words, the boundary/non-boundary labels are decoded as the
hidden events in the CRF model at each inter-word region
across the speech transcripts. The DNN is trained to correctly
classify the word boundaries into two classes, i.e. sentence
unit (SU) or non-sentence unit (NS). In the input layer, the
various features have the same length for each word, and they
are fed to DNN. In the hidden layers, DNN learns the non-
linear transformation in each hidden layer. The activation at
layer l is defined as,

hl = fl(Wlhl−1 + bl), for 1 ≤ l ≤ L, (1)

where fl is a sigmoid function, L is the total number of hidden
layers, Wl is a weight matrix, and bl is a bias vector. In the
output layer, DNN adopts a softmax function to classify the
boundary/non-boundary events given the input observations.

The DNN module calculates the posterior probabilities
P (E|Fk) of the SU event conditioned on the input fea-
tures. They are combined with the linguistic features FL

to serve as observations in a linear-chain CRF model. The
CRF model assigns a conditional probability distribution over
the possible label sequences on a given training set, using
the maximum likelihood criterion. In other words, the CRF
integrates the multiple knowledge sources, and calculates the
overall conditional probability distribution P (E|O), where E
represents the SU/NS labels sequences, and O represents the
input observation sequences, FL and P (E|Fk) [2]. The most



Fig. 2: Structure of the proposed DNN-CRF sentence unit
detection system using the multi-view features as input.

like SU/NS sequence Ê is defined as,

Ê = argmax
E

P (E|O) (2)

= argmax
E

exp(
∑K

k λk ∗ Fk(E,O))∑
E exp(

∑K
k λk ∗ Fk(E,O))

, (3)

where k indicates the different features, each of which has an
associated weight λk. For an input sequence O and an label
sequence E, the posterior Fk(E,O) is defined as,

Fk(E,O) =
∑
i

fk(E,O, i), (4)

where i is an index over all the input positions. fk(E,O, i)
is the feature function at position i over the label sequence
and observation sequence. CRF uses a convex loss function
which guarantees the convergence to a global optimum. The
Viterbi algorithm is used to find the most likely label sequence.
When fk(E,O, i) = fk(Ei−N , ..., Ei, Oi−M , ..., Oi, i), an N -
order linear-chain CRF, which models N (E = Ei−N , ..., Ei)
sequence labels and M (O = Oi−M , ..., Oi) context features
in the feature set, is formed. In practice, N = 1 and
M = 1 are usually used because of the exponential increase
of computational cost for higher N and M [2]. Details of the
system training/test procedures are given in Section III-C.

III. EXPERIMENTS

A. Data and Evaluation Metric for Speech Inversion

To extract the ArFs from the acoustic speech, we need
a corpus with parallel articulatory and acoustic recording,
like the MNGU0 corpus. The MNGU0 corpus consists of
1263 TIMIT sentences uttered by a single speaker. It contains
ground-truth EMA recordings, microphone recordings, and
phone-level transcriptions [17]. EMA is the most widely used
articulography technique for creating parallel acoustic and
articulator-position recordings. The electromagnetic transducer
coils are glued to the vocal-tract articulators to record precise
measurements of their positions. The 6 transducer coils are
positioned at the upper lip (UL), lower lip (LL), lower incisor

(LI), tongue tip (TT), tongue blade (TB), and tongue dorsum
(TD). We used the 12-dimensional EMA measure as the raw
ArFs, i.e., the x and y position of the 6 articulatory positions.
The setting was also used in [16], [17]. The sampling fre-
quency is 200 Hz. The dataset is partitioned into three sets:
validation and testing sets comprising 63 utterances each, the
training set consisting of the other 1137 utterances. We used
the root mean square error (RMSE) to measure the accuracy
of the predicted trajectories of every articulator i, where its
RMSE is defined as,

RMSEi =

√√√√ 1

T

T∑
t=1

(Ai(t)− Âi(t)), (5)

where Ai is the ground-truth trajectory and Âi is the estimated
trajectory of length T.

B. Data and Evaluation Metric for SUD

We evaluate the SUD system on the English corpus
(LDC2004T12) from the standard NIST rich transcription
(RT)-04 Fall SUD task in the DARPA EARS program. The
released portion only contains the training set used in the NIST
task. To reproduce the results in [2], we extract 2 hours BN
data from the RT-04 set to use as the test set and the rest 18
hours as the training set. Table I shows the data structure of the
English BN corpora in the training/testing set. About 8% of the
inter-word positions are sentence boundaries, i.e., the sentence
is on average 12 to 13 words long. The reference transcription
(REF) is annotated according to the annotation guideline in
[27]. The recognized transcription (ASR) is generated from
our speech recognizer with a word error rate of 29.5%.

The DNN-CRF SUD model was trained with the ground-
truth REF transcriptions. They were tested on both REF and
ASR transcriptions to study the influence of ASR errors on
the segmentation system. Several evaluation metrics have been
used for SUD. In this study, we reported the precision, recall,
F1-score, and the NIST SU error rate. The F1 score (or F-
measure) has previously been used by Shriberg et al. [12] and
Liu et al. [7] to compare SUD performance. F1 is defined as,

F1 =
(1 + β2) ∗Recall ∗ Precision

β2 ∗Recall + Precision
, (6)

where Precision = TP/(TP+FP) and Recall = TP/(TP+FN).
TP denotes the number of true positives, FP denotes false
positives, FN denotes false negatives, and β corresponds
to the relative weight/ratio of precision versus recall, β =
Precision/Recall. The NIST SU error rated is calculated using

TABLE I: Data structure of the English broadcast news
corpora in the training/testing set.

English RT-04

Training Number of words 169,842
Number of sentence units (SUs) 13,182

Test Number of words 13,993
Number of sentence units (SUs) 1,197



the standard scoring tool md-eval-v17.pl, which calculates
the average number of misclassified boundaries per reference
boundary. For the ASR transcriptions, the scoring tool aligns
the reference word string (REF) and the hypothesized word
string (ASR) to minimize the word error rate 3. Then the
hypothesized SU events are mapped to the reference events
using the word alignment information, and the unmatched
events, i.e., insertions and deletions are counted. The NIST
SU error rate is defined as,

NIST SU error rate =
insertion+ deletion

total number of SUs
. (7)

C. System Implementations

The multi-view features, or more precisely their DNN
posteriors, are combined with the linguistic features in the
DNN-CRF model. We trained the DNN, both the inversion
and segmentation modules, in a supervised greedy layer-wise
manner. We started with 1-hidden layer NN that mapped the
PFs/AcFs/ArFs or their combinations to the SU/NS poste-
rior probabilities, SU: sentence unit, NS: non-sentence unit.
Then the output of the single layer DNN is used as the
input to a second 1-hidden layer NN to map to the SU/NS
posteriors. The procedure can be repeated with unlimited
number of hidden layers. For the sentence boundary classi-
fication/tagging problem, we show that a 3-hidden layer DNN
reaches the best performance, and adding more hidden layers
does not further improve the performance. DNN training is
implemented by stochastic gradient descent algorithm. Since
there are limited date in the SUD task, we empirically set
the L2 weight decay to a small value, 0.00001, to prevent
over-fitting. The same setting was used in [18]. DNN train-
ing stops when the performance improvement is less than
0.002% on the validation data (part of the training set).
The CRF++ toolkit 4 is used to implement the CRF model
in this paper [28]. The DNN posteriors are quantized to 6
bins: [0, 0.1], (0.1, 0.3], (0.3, 0.5], (0.5, 0.7], (0.7, 0.9], (0.9, 1],
as the toolkit only handles discrete features.

IV. RESULTS

A. Results on Speech Inversion

Table. II shows the detailed RMSE of the 12 dimension
EMA data, or the raw ArFs, using the DNN inversion module
and the MNGU0 corpus. The input to the inversion module
consists of 5 selected AcFs, i.e., the energy, pitch, and formant
tracks (F1 to F3), where [16] uses 40 frequency warped line
spectral frequencies (LSFs) and an energy gain. Formant 4
(F4) is not used as we found that it degrades the RMSE
by about 0.05 mm. The context window length is 5. The
DNN inversion module has 3 hidden layers, each with 100
hidden nodes. The output has 12 nodes, which are the x-y
coordinates of the 6 articulators, the upper lip (UL), lower lip
(LL), lower incisor (LI), tongue tip (TT), tongue blade (TB),
and tongue dorsum (TD). The same outputs are used [16]. We

3Online at http://www.itl.nist.gov/iad/894.01/tests/rt/2004-fall/
4Online at http://crfpp.googlecode.com/svn/trunk/doc/index.html

also used a low-pass filter (LPF) with a cut-off frequency at
15 Hz to smooth the inverted ArFs by eliminating unrealistic
or abrupt articulatory movements. The reason of using a low
frequency is that the articulatory trajectories from the acoustic-
to-articulatory mapping are already smooth. It is not necessary
to use a high cut-off frequency in the low-pass filter to smooth
out abrupt trajectories The smoothed ArFs are used in the
same way as the AcFs to produce word-level feature vectors
for sentence segmentation.

We obtained RMSE of 0.99 mm on the same MNGU0 test
data, where [16] obtained 0.93 mm on DNN (and reduced
to 0.88 mm with pre-training), and [17] obtained 0.99 mm on
TMDN. However, the selected 5-dimensional AcFs are able to
retrieve the ArFs with similar precision as the 40-dimensional
LSFs, as used in [16], [17]. The AcFs are directly related
to the articulatory trajectories. For example, one region in
the articulatory space, ’fibers’, could correspond to a single
point in the acoustic parameter space [14], [17]. The AcFs
also demonstrate different error patterns from the LSFs. They
obtain higher error on the y-coordinates of the TT, TB, and
TD than their x-coordinates. This is expected since these artic-
ulators have more abrupt movements on the y-axis, i.e., high-
low tongue positions. For example, the tongue tip movement
during the production of dental plosives (e.g., /t, d/) and the
jaw movement during the production of the low vowels (e.g.,
/aa, ow/) are more abrupt than the other articulators.

TABLE II: Detailed RMSE (mm) of the DNN inversion mod-
ule on the MNGU0 test set. The 12 articulatory dimensions
include the x-y coordinates of the 6 articulators, the upper
lip (UL), lower lip (LL), lower incisor (LI), tongue tip (TT),
tongue blade (TB), and tongue dorsum (TD).

TMDN [17] LSF-DNN [16] AcF-DNN
raw LPF

UL x 0.32 - 0.34 0.34
UL y 0.49 - 0.47 0.44
LL x 0.64 - 0.55 0.54
LL y 1.18 - 1.04 0.99
LI x 0.57 - 0.56 0.55
LI y 0.75 - 0.82 0.79
TT x 1.36 - 0.74 0.72
TT y 1.28 - 2.49 2.39
TB x 1.34 - 0.64 0.62
TB y 1.24 - 2.37 2.29
TD x 1.22 - 0.71 0.67
TD y 1.57 - 1.93 1.86
Average (mm) 0.99 0.93 1.05 0.99

B. Results on SUD

Table III summarizes the sentence unit detection results
(precision, recall, F1, and NIST error rate) on the broadcast
news (BN) RT-04 corpus. Two types of transcriptions: human-
generated reference transcriptions (REF) and automatic speech
recognition output (ASR) are used in the different feature-
system settings: The results of the HMM, CRF, and DT-CRF
systems are extracted from [2], which used prosody features
and linguistic features (without the named entity tags). The



DT-CRF used a C4.5 tree structure, where the DT posteriors
are combined with the lexical features in the CRF model [2].
Using the PFs and the LFs on the DT-CRF model, Liu et al.
achieved 43.1% NIST SU error rate on the English RT-04 BN
REF data, and 55.6% on the ASR data [2]. The difference
between the test condition in [2] and ours is that we split the
available RT-04 data for training and testing, which is part
of the full RT-04 data as used by [2] in their evaluation. In
addition, the word error rate in the ASR transcripts of [2] is
11.7%, much lower than 29.5% our ASR transcripts.

Using the same feature input, DNN-CRF outperforms the
DT-CRF model of [2], with 7.2% and 2.3% absolute NIST SU
error reduction on the REF and ASR transcriptions. With the
multi-view features, DNN-CRF: multi-view features further
reduce the NIST SU error by 6.0% absolute rate on the REF
transcriptions. There is little performance gain from the multi-
view features in the ASR condition. Yet the multi-view DNN-
CRF system shows slightly higher precision but lower recall
rate than the previous system. Both the true positive and the
false alarm rates are much lower in the new system. One issue
is the high word error rate in the recognition output, 29.5%,
which affects the features extraction for each word interval.
Word errors may propagate in the LFs through POS tagging,
chunking, and named entity tagging, where the LFs may
be extracted with imperfect word alignments. For the ASR
transcripts, the precision is over 90%, which indicates that
there are more missing SUs compared to the REF condition.
The recall is low for all three systems, and the final F1 value
is not much improved with new features.

Table IV summarizes the NIST SU error rate of different
feature combinations in the DNN-CRF model. The multi-
view features achieve the best NIST error rate, 29.9%, on the
English RT-04 corpus. Results in Table IV also show that the
PFs, AcFs, and ArFs are complementary to each other in the
SUD task. One drawback is that the data size becomes large for
the multi-view features, resulting in long DNN training time.
In addition, the best performance by the multi-view feature,
29.9%, is similar to that of PF +AcF , 30.4%, which may be
due to the fact that the ArFs are projected/inverted from the
AcFs. We may need to find a more efficient way to exploit the
advantage of the articulatory dynamics. Furthermore, we also
need to tune the DNN posterior module on the limited data
to optimize the performance, e.g., through pre-training, as the
results tend to vary with random initialization.

TABLE IV: NIST SU error rate (%) of the DNN-CRF based
sentence segmentation using different feature combinations on
the English REF transcriptions.

Feature (dimension) DNN-CRF
Prosodic view PF (162) 57.1

Acoustic view AcF (108) 39.6
PF + AcF 30.4

Articulatory view ArF (216) 39.6
PF + ArF 31.2

Multi-view PF + AcF + ArF 29.9

C. Demo of Multi-View Features on English Sentence

Compared with the state-of-the-art SUD system in [2], the
combined use of the prosody, the articulatory, the acoustic, and
the linguistic features in the proposed DNN-CRF model results
in improved SUD performance. The performance gain comes
from two aspects. First, the proposed multi-view features are
from the production, the perception, and the linguistic do-
mains. They are useful when representing the speech dynamics
at the sentence level, and they are complementary to each
other in SUD. Second, the DNN-CRF model can effectively
leverage the sequential information in the SU tagging problem
[18], [28].

Fig. 3 shows the LFs (REF text, pos5, chunk6, & named
entity7) and AcFs (intensity, pitch, and the first two formants)
in the word-intervals (boundaries marked by dashed lines).
The SU/NS labels are shown at the bottom layer in panel (1)
of Fig. 3. At the sentence boundary, there is usually silence,
and discontinuity of pitch value, as shown at the last word
interval in panel (3) of Fig. 3 . However, there maybe overlaps
among the groups of features. For example, [29] has shown
that the stress patterns are correlated with the adjective-noun
compounds in English speech. We have tried to de-correlate
the features using principle component analysis, and the SUD
performance degrades slightly on the reduced feature sets. This
issue would be addressed in our future studies.

Moreover, many of the word boundaries are clearly visible
in the AcF contours. So the proposed multi-view features
and DNN-CRF model can also be used to detect other
speech segment boundaries, such as word, paragraph, and story
boundaries.

V. DISCUSSION AND CONCLUSION

Sentence unit detection adds punctuation marks to the ASR
output, making it easier for human to read and for downstream
NLP modules. It serves as an important connection between
the ASR and the NLP modules.

In fact, SUD has already been widely applied at the ASR
output for many languages besides English [2], e.g., Arabic
[30], Chinese [31], Portuguese [32], etc. Though there are
many parsing and segmentation technique in NLP that deals
with pure text, the ASR output text contains no capitalizations
and limited paragraph structures. Yet spontaneous speech
contains multiple information sources that are not available
in pure NLP text. These information sources can be used
to predict the sentence boundaries in the running speech
and its ASR transcripts. In this paper, we describe a DNN-
CRF approach with multi-view features for sentence unit
detection in English broadcast news. There are two main
contributions and observations in this study. First, we extracte

5pos: JJ - adjective, TO - to, VB - Verb/base form, PRP - personal pronoun,
NN - noun, singular or mass, VBG - verb/gerund or present participle, DT -
determiner, IN - preposition, VBD - verb, past tense.

6chunk: S - beginning, ADJP - adjective phrase, VB - verb chunk, NP -
noun chunk.

7named entity: E - entity, O - other. The su tags: NS - non-sentence, SU -
sentence unit.



TABLE III: Performance of different feature-model combinations for the sentence detection task (precision, recall, F1, and
NIST SU error rate) on the broadcast news (BN) RT-04 corpus.

REF ASR
P R F1 NIST SU error P R F1 NIST SU error

HMM [2] - - - 52.23 - - - 60.64
CRF [2] - - - 49.88 - - - 58.21
DT-CRF [2]: PF+LF 81.4 73.9 77.4 43.1 90.6 49.5 64.0 55.6
DNN-CRF [18]: PF+LF 85.9 76.7 81.0 35.9 95.0 49.3 64.9 53.3
DNN-CRF: multi-view features 88.41 80.1 84.1 29.9 96.9 48.9 65.0 52.6

Time (s)
0 3.316

44.84

80.12

In
te

ns
ity

 (
dB

)

(2)

Time (s)
0 3.316

P
itc

h 
(H

z)

0

500

(3)

Time (s)

F
or

m
an

t f
re

qu
en

cy
 (

H
z)

0 3.316
0

1000

2000

3000

4000

5000

(4)

text: nice to see you john you’re doing a great job on this space beat sil
pos: JJ TO VB PRP NN JJ VBG DT JJ NN IN DT NN VBD
chk: S-ADJP VP NP NP NP VP NP PP NP
ne: O E O
su: NS NS NS NS SU NS NS NS ... NS NS NS SU

Time (s)
0 3.316

W
av

ef
or

m
 a

nd
 W

or
d 

ta
gs

(1)

Fig. 3: The waveform with the selected acoustic and linguistic features in the RT-04 sentences ee970703 :
nicetoseeyoujohnyou′redoingagreatjobonthisspacebeat panel (1) illustrates the linguistic features (REF text, pos, chunk
(chk), named entity (ne) and the SU/NS tags. panel (2) illustrates the intensity contour; panel (3) illustrates the pitch contour;
panel (4) illustrates the first two formants.

a set of multi-view features: prosody, acoustic, articulatory,
and linguistic features, and use them together in the DNN-
CRF model to predict the sentence boundaries. Experiments
show that the proposed multi-view feature outperforms the
best SUD system in the literature by 13.2% absolute NIST
SU error rate. We also show that they played complementary
roles during prediction, and achieved the best performance
when used together. Second, we show that DNN is more
accurate and more robust than DT model when modeling the
speech features, both on the ground-truth REF transcripts and
on the ASR transcripts. However, the accuracy of sentence
detection is subject to the word-recognition accuracy in the
ASR transcriptions. When applying NLP modules such as
POS tagger and named entity recognizer, the word errors

propagate to the modules and degrade the subsequent system
performance. On the ASR transcripts, the DNN-CRF obtains
less performance gain than on the REF transcripts. Our current
work include testing the SUD module on different ASR error
rates. Another issue in the SUD task is that there are more non-
SUs than SUs in the training/test data, i.e., imbalanced data
distribution [7]. So we are also interested in trying out different
sampling/bagging methods to tune the DNN-CRF model.
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