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Abstract

This thesis elaborates the use of speech production knowledge in the

form of articulatory phonetic features to improve the robustness of

speech recognition in practical situations. The main concept is that

natural speech has three attributes in the human speech processing

system, i.e., the motor activation, the articulatory trajectory, and the

auditory perception. Consequently, the research work has three com-

ponents. First, it describes an adaptive neural control model, which

reproduces the articulatory trajectories and retrieves the motor acti-

vation patterns in a bio-mechanical speech synthesizer. Second, by

manipulating the elastic vocal tract walls, the synthesizer produces

the overall articulatory-to-acoustic trajectory map for English pro-

nunciations. Third, the articulatory phonetic features are extracted

in neural networks for speech recognition in cross-speaker and noisy

conditions. The experimental results are compared with the tradi-

tional hidden Markov baseline system.
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Chapter 1

Introduction

1.1 Motivation

Human-machine communication plays a dominant rule in productivity in the

information age. Speech is the most convenient way of communication for human.

One distinct advantage of speech is its capacity and efficiency. Spontaneous

speech conveys 2.0 to 3.6 words per second on average. In contrast, average

computer user can only type about 0.2 to 0.4 words per second, while the most

skilled typists only achieve 1.6 to 2.5 words per second. In the actual working

environment, that is thinking whilst typing, speech gives 3 words per second,

while typing only 0.3 words, ten times slower (Martin and Jurasfsky, 2008). The

use of speech will thus free the hands from the keyboard for multi-tasking. It will

bring as many advantages as when the hands were first freed from the ground

when human learned to walk.

Digital speech processing consists of two main components: automatic speech

recognition (ASR), and natural language understanding. ASR transcribes text

from the spoken input. Language understanding extracts the meaning of the writ-

ten or spoken text and gives feedback accordingly (Woodland, 1998). A simple

information retrieval system involving the processes is shown in Fig. 1.1, which

distinguishes the two processes in the dashed box. Speech research encompasses

a broad range of technical challenges, including automatic recognition of words

and phrases in the speech signal, extraction of keywords or key-phrases in the

1



1.2 Objectives

recognized utterances, and understanding of the spoken utterances. It has al-

ready shown great promises in many areas that are beneficial for the public, for

example, dictation software in personal computers, automatic call routing ser-

vices, telephone inquiry systems for share prices, train timetables and banking

services. AT& T’s VRCP, a five-word keyword spotting system, which automates

billions of calls every year saves operating cost in the scale of hundreds of mil-

lion of dollars (Cox, 2000). Other applications in darkroom operations have also

greatly improved the productivity of industries. It is perceivable that the advent

of powerful computing devices and the fast improvements of microprocessors will

continue to bring more important scientific advances in speech technologies that

benefit human society (Juang and Furui, 2000; Woodland, 1998).

Figure 1.1: Human-computer interaction of the information retrieval system.

1.2 Objectives

This research aims to use the articulatory phonetic features to improve the ac-

curacy and robustness of speech recognition in practical situations. It focuses on

a pronunciation modeling method that combines the three attributes of English

2
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1.2 Objectives

speech: the motor activation, the articulatory trajectory, and the auditory percep-

tions. The method is analogous to that of the human speech processing system.

The hypothesis is that the phonemes exhibit distinctive characteristics in the

three different feature spaces. The author’s research work has three main goals.

First, it aims to design an adaptive neural control model for a bio-mechanical

speech synthesizer. The synthesizer should reproduce the articulatory trajecto-

ries and retrieve the motor activation patterns in the speech sound. Second, it

aims to use the bio-mechanical synthesizer to map the articulatory-acoustic tra-

jectories. Third, it aims to derive the set of articulatory phonetic features for

English speech. These features serve to embed additional knowledge sources in

speech recognition systems.

1.2.1 Robustness in ASR

1.2.1.1 Speech Variability Sources

ASR remains a challenging problem due to the variability of the speech signals.

Speech conveys a message with multiple levels of knowledge sources, e.g., dis-

course, semantics, syntax, phonological, phonetic, acoustic, and articulatory. It

also conveys information about the speaker such as gender, age, social status, ge-

ographical origin, health status, emotional state, and voice identity. The sources

of variability can be generally classified as the following:

1. Intra-speaker (same speaker) variability,

(a) Speaker physiology

(b) Language proficiency

2. Inter-speaker (cross speaker) variability,

3. Linguistic variability,

(a) Speaking style

(b) Disfluency

(c) Rate of speech

3



1.2 Objectives

(d) Co-articulation

4. Channel variability.

(a) Background noise

(b) Channel noise

(c) Room reverberation

The ideal ASR systems must cope with these sources of variability to achieve high

accuracy and robustness. Current systems are usually compromised the goal by

specifying their constrains (Benzeghiba et al., 2007; Woodland, 1998),

1. vocabulary size,

2. mode of speech: isolated words versus continuous speech,

3. speakers dependence,

4. style of speech: read versus spontaneous.

These include the isolated word recognition (system 1 in Table 1.1), connected

word recognition (system 2), conversational speech recognition (system 3), and

conversational speech understanding (system 4) systems 1. A number of bench-

marking databases have also been constructed. For example, the DARPA resource

1

MIT Massachusetts Institute of Technology

IBM International Business Machines Corporation

CMU Carnegie Mellon University

HTK Hidden Markov Model Toolkit

BBN Bolt, Beranek and Newman Technologies

CNET Centre national d’études des télécommunications (National Center for Telecommuni-

cation Studies)
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1.2 Objectives

management (RM) database, Texas Instrument (TI)46 - isolated digits, TIDIG-

ITS - connected digits, Alpha-Numeric (AN)4 - 100 words vocabulary, Texas In-

strument and Massachusetts Institute of Technology (TIMIT), Wall Street Jour-

nal (WSJ)5K - 5, 000 words vocabulary, and WSJ20K - 20, 000 words vocabulary.

Table 1.1 lists the groups of speech recognition and understanding systems ac-

cording to the constraints.

Table 1.1: Types and performance of speech recognition and understanding sys-

tems. Detailed analysis and comparisons of these systems can be found in (Klatt,

1977; Reddy, 1976; Siroux and Gillet, 1985).

Mode of Speech Vocabulary Size Software Systems Word Accuracy

1. isolated words 10− 30 dictation systems 98− 99.8%

2. connected words 10− 500
Bell Lab: telephone voice-operation ≤ 96%

IBM: voice-activated typewriter ≤ 95%

3. read speech 30− 2000

CMU: Hearsay-I, Sphinx & Dragon ≤ 83%

MIT: Lincoln system ≤ 90%

IBM: ViaVoice ≤ 97%

4. conversational speech 100− 5000

CMU: Hearsay-II, Harpy ≤ 65%

BBN: Hwim, Speechlis ≤ 75%

CNET: KEAL ≤ 65%

1.2.1.2 ASR Diagnosis

ASR technology has improved remarkable in the past six decades. However,

compared to human performance, it still has a long way to go. The major concern

is that the human listener outperforms the most advanced speech recognition

system not only in noisy conditions but also in quiet environment. Even when the

training provides acoustic/language models which are almost perfectly matched

to the testing conditions, the ASR system still fail match to its human counterpart

(Sroka and Braida, 2005). There is a deficiency gap of 10% versus 1% word error

rate (WER) for the WSJ task between the human and the machine performance.

There are two levels of differences between the ASR system and the human

listener. First the single microphone remains a common input device in most

ASR applications. Yet human has two ears that allow directional hearing, local-

ization, and tracking. Though the microphone arrays have been used to resemble

5



1.2 Objectives

this effect (Che et al., 1994; Shimizu et al., 2000), the human ear is much more

sophisticated than the microphone both anatomically and functionally. Current

recording devices and feature extraction methods in ASR are not as competent

as the human ears (Parham et al., 2006). Second the human brain consists of

approximately 100 billion neurons with a vast around of interconnection, whereas

the most powerful computer processors at present have less than 100 million tran-

sistors, about one thousand fold less in the basic computing units (Martin and

Jurasfsky, 2008). Moreover, a transistor is not the same as a neuron. A neu-

ron is a non-linear summation of inputs working in an inherently analog fashion,

whereas a transistor, only mimics such analogous behaviors in a digital form,

with only two outputs, 0 and 1 (Parham et al., 2006). In the end, the robust-

ness and accuracy of human speech recognition would probably be more than the

functionality of either the brain or the ears. The human speech recognition may

in fact rely on cooperating both in the central nervous system.

1.2.2 Speech Production Knowledge in ASR

Conventional ASR system treats human speech as a concatenation of acoustic

observations to allow probabilistic modeling of the phonetic sequences, e.g., us-

ing the hidden Markov models (HMMs) . The approach becomes problematic

when dealing with the variabilities of natural conversational speech. In recent

years, many articulatory and auditory based processing methods have been pro-

posed to address the problem of phonetic variations in a number of frame-based,

segment-based, and acoustic landmark systems (King et al., 2007; Stevens, 2002).

For instance, the direct articulatory data have been collected through the use of

electromagnetic articulograph (EMA) , X-ray analysis, and laryngograph (i.e.,

electroglottograph). They provide good references as well as additional knowl-

edge sources for physiological speech studies (Richmond, 2009). The so-called

articulatory features (AFs) have also improved the recognition performance of

many ASR systems. For example, AFs derived from phonological rules have out-

performed the acoustic HMM baseline in a series of phoneme recognition tasks

(King et al., 2007; Kirchhoff et al., 2002; Saenko et al., 2005). Similarly, exper-

imental studies of the mammalian peripheral and central auditory organs have
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also introduced many perceptual processing methods. For example, several audi-

tory models have been constructed to simulate human hearing, e.g., the ensemble

interval histogram, the lateral inhibitory network, and Meddis’ inner hair-cell

model (Holmberg et al., 2006; Jankowski et al., 1995; Jeon and Juang, 2007).

Auditory based features such as mel-frequency cepstral coefficients (MFCCs) and

perceptual linear predictive coefficients are now widely used in ASR systems (Her-

mansky and Morgan, 1994; Holmberg et al., 2006).

In addition, the discovery of mirroring neurons suggests the bi-directionality

of human speech production and perception. It urges researchers to investigate

both aspects collectively to break the bottleneck of current speech recognition

systems (Levelt, 1999). Previously, Guenther et al. (2006) have constructed a

neural model to organize the accumulated pool of articulatory and acoustic data

in a framework of humanoid sensory blocks. Following their footsteps, Kröger

et al. (2009) built a neural computation model to enable parallel production and

perception of simple syllables such as vowels, consonant vowel (CV), vowel con-

sonant vowel (VCV), and consonant vowel consonant (CVC) patterns. However,

up till now, the acoustic and the articulatory features have mostly been used as

additional input streams or as internal representations in conventional ASR sys-

tems such as HMMs (Siniscalchi and Lee, 2009), multi-layer perceptrons (MLPs)

(Kirchhoff et al., 2002), time-delay neural networks (TDNNs) (Schuster and Pali-

wal, 1997), radial basis function-based neural networks (RBF-NNs) (Yousefian

et al., 2008), dynamic Bayesian networks (DBNs) (Frankel et al., 2007), and

their hybrids (King et al., 2007; Trentin and Gori, 2001).

The main difficulty of using the multiple speech attributes in the ASR systems

is the non-linearity between the articulatory data and the acoustic data. On the

one hand, the articulatory-to-acoustic mapping is not one-to-one. In other words,

there are more than one vocal shapes that can produce the same speech sound.

On the other hand, both the articulatory and the acoustic data contain variations

for the same speech sound, where the exact pronunciation depends on the context

and the speaker. The acoustic-to-articulatory mapping, also known as the inverse

mapping, remains a difficult problem in speech research (Toda et al., 2008).

7
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1.3 Major Contribution of Thesis

ASR has many limitations in practical applications. The thesis summarizes the

author’s research work on using articulatory features for improved speech recog-

nition. Major contribution of the thesis include:

1. Different from the existing phonological articulatory features (PAFs) which

are derived from the broad linguistic definitions, e.g., manner of articulation

(MOA) and place of articulation (POA), as used in (Frankel et al., 2007;

Kirchhoff et al., 2002; Siniscalchi and Lee, 2009), a more reliable heuristic

mapping strategy is used to retrieve a set of articulatory phonetic features

(APFs) for the pronunciation models on a set of hand-labeled sentences.

In addition, a heuristic learning algorithm is used to embed two knowledge

based rules: the listener-oriented maximization of auditory discriminations

from human speech perception and the speaker-oriented minimization of

articulatory effort from human speech production.

2. This study uses a neural based articulatory phonetic inversion (API) model

to find the abstract phonetic representation for improved speech recogni-

tion. The approach roots in the concept that the speech sound occupies a

spread region, rather than isolated points, in the auditory and the articu-

latory domain (Damper and Harnad, 2000; Kielar et al., 2011; Mottonen

and Watkins, 2009). What differs this study from others is the unified ex-

planation of speech events in the production and the perception domains.

The proposed pronunciation modeling method distinguishes the base-forms

from the variations of English phonemes using multiple knowledge sources

that are not present in conventional classifiers.

3. It addresses the non-uniqueness and the non-linearity issues in the inver-

sion experiments by incorporating the multiple knowledge sources at three

places.

• In the control model, the bio-mechanical synthesizer approximates the

human anatomy in physiological and functional properties.

8
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• In the pronunciation model, the heuristic learning algorithm mimics

the experience of human speech acquisition and production.

• In the inversion model, the data clustering algorithm minimizes the

within-class scatter distance and maximizes the across-class scatter

distance in the synthetic data, which is analogous to the categorical

nature of human speech perception.

4. The research work focuses on finding and resolving the bottleneck of current

speech processing techniques to improve the accuracy and the robustness.

It reports the frame level accuracy and identifies the phoneme error patterns

in ASR systems.

1.4 Organization of Thesis

The research method in this thesis is analogous to the human speech processing.

It aims to simultaneously model the three attributes of human speech: the motor

activation (speech signals in the brain), the articulatory trajectory (in the vocal

tract), and the auditory perceptions (in the ear). The technical chapters, Chapter

3, 4, and 5, support the research goal, which aims to use the articulatory pho-

netic features to improve the accuracy and robustness of speech recognition. The

hypothesis is that the phonemes exhibit distinctive characteristics in the different

feature spaces. The rest of the thesis is organized as follows.

Chapter 2 reviews the ASR techniques in the literature.

Chapter 3 focuses on motor activation. It presents the adaptive neural control

scheme based on fuzzy logic and neural networks. The proposed controller tracks

the articulatory movements of the human vocal tract and infers the activation

patterns of the underlying muscular structures. It is able to manipulate the mass-

spring based elastic tract walls in a 2-D articulatory synthesizer to realize efficient

speech motor control and to generate the articulatory-acoustic map of English

phonemes.

Chapter 4 focuses on speech production and perception. It presents the map-

ping between the articulatory trajectories and the auditory parameters. By ana-

lyzing the multi-dimensional articulatory-acoustic attributes, this chapter shows
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that the articulatory feature space presents a much smaller variance than the

acoustic feature space. The phonetic analysis uses the non-uniform segments,

i.e., the phonetic base-forms, the broad phoneme forms, and the narrow phonetic

forms, to represent the variations of English pronunciations. Each segment can

have more than one narrow phonetic labels to account for the source of variations

such as the co-articulation effects in conversational speech.

Chapter 5 focuses on deploying the above method in machine-based speech

recognition. First it retrieves the articulatory data from the acoustic data through

a neural inversion module. Second it uses the set of auditory and articulatory

features in a neural recognition module. The speech recognition experiments are

carried out to test the accuracy and the robustness of the proposed technique

dealing with the speaker variation and the noise contamination.

Chapter 6 concludes the thesis report, and recommends directions for future

researches.

————————————————————————

10



Chapter 2

Literature Review

2.1 Overview

This chapter reviews the techniques in automatic speech recognition (ASR). Sec-

tion 2.2 presents the theoretical basis of human speech processing, including the

production (2.2.1) and the perception (2.2.2). Section 2.3 introduces the digital

representations and properties of the speech signal. Section 2.4 reviews the two

types of speech recognizers, including the statistical method (2.4.1) and the con-

nectionist method (2.4.2). Section 2.5 reviews the robustness techniques dealing

with noise contamination (2.5.1) and speaker variations (2.5.2), and the use of

articulatory cues (2.5.3).

Besides authorized books by linguists and speech experts, the primary sources

of information in this review are IEEE Transactions of Acoustic, Speech, and Sig-

nal Processing, Journal of the Acoustical Society of America, Computer Speech

and Language, Speech Communication, and Computational Linguistics. Major

conferences in speech processing such as the International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP) and Interspeech are also covered.

Interested readers can refer to these publications for more information.
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2.2 Human Speech Processing

Human language, either verbal speech or written text, is in many ways a cre-

ative activity, which distinguishes from animal communication mainly in two

aspects. First the human listener is able to understand an indefinite number

of new expressions across speakers and contextual variations after mastering a

language. Second the human speaker is able to produce an equally indefinite

number of expressions which can also be understood by others who share this

ability (Chomsky, 2006). Accordingly, the nature of human speech encloses two

folds. First speech exists as an information carrier in certain transmission chan-

nels, e.g., the sound waveform in the air (Allen, 1996). Second speech exists as

part of the intellectual heritage which is dependent upon the influence of social

communications and instructions through intuition, active learning, and experi-

ences. Thus speech recognition can be outlined as a mirroring chain of events, as

shown in Fig. 2.1. The left side shows the production fold where a message is

encoded with articulatory gestures, and the right side shows the perception fold

where the auditory signals are decoded to retrieve the message.

Figure 2.1: Overview of human speech production (left) and perception (right)

in the mirroring chain of events.
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2.2 Human Speech Processing

2.2.1 Production Basis

There are a number of traditions and schools of thoughts regarding the theory of

speech production, which generally consists of four stages (Martin and Jurasfsky,

2008), as illustrated on the left hand side of Fig. 2.1:

1. semantic encoding: it forms the concept and the intended message;

2. syntactic encoding: it specifies the syntactic frame or abstract form of words

(without sound information);

3. phonological encoding: it retrieves the sound properties, i.e., phonological

rules, for the phonemes and the syllables;

4. phonetic encoding: it articulates the sound through the glottis and the

vocal tract using the appropriate motor coordination.

The semantic encoding stage is usually concerned with natural language un-

derstanding, though it is also sometimes used in ASR for specified tasks, e.g.,

small vocabulary digit and name dictations. This study will focus on the last

three stages, where the interaction of different physiological structures in the ar-

ticulatory space transforms the aerodynamic and myoelastic energy into acoustic

signals. Speech is first created with pulmonary pressure provided by the lungs

that generates sound by the glottal excitation in the larynx. Then it is modified

by the vocal tract into different vowels and consonants. The vocal tract is an

acoustic tube located between the vocal cords and the lips. A secondary tube,

the nasal tract separates from the first by the velum. The shape of the vocal

tract is determined by the position of the lips, jaw, tongue,and velum. Sound

is generated by the different combination of the above apparatus. For exam-

ple, voiced sounds are produced by the vibration of the vocal cords. Fricative

sounds are produced by the constriction at different places in the vocal tract.

Plosive sounds are produced by completely closing the vocal tract, building up

the pressure before quickly releasing it (Schafer and Rabiner, 1975).
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2.2.2 Perception Basis

Psycholinguistic studies deal with human speech perception at four stages (Jeon

and Juang, 2007; Slaney, 1998), as shown on the right hand side of Fig. 2.1:

1. Peripheral perception: the outer ear receives the acoustic stimuli on a non-

linear frequency scale, i.e., frequency selectivity;

2. Cochlear filtering: the cochlea maps the incoming tones to various spatial

locations on the tonotopic axis of the central auditory system on the basilar

membrane;

3. Transduction: the mechanical displacements along the basilar membrane

converts into electrical activities on the topographically ordered array of

auditory nerve fibers;

4. Semantic abstraction: the organ of corti transmits the electric pulses, which

literally contain all the acoustic information, through the vestibulo-cochlea

nerve to the primary auditory cortex on the brain atmospheres.

The goal of ASR is ultimately that of a court-recorder, which transcribes

speech to text (Martin and Jurasfsky, 2008). This study will focus on the first

three stages where the stimulated sound waves are transmitted to distinctive ex-

citation patterns. For auditory feature extraction, the bark-frequency cepstral

coefficients (BFCCs) are used to approximate the excitation patterns of the audi-

tory nerve fibers. The ongoing debate is whether speech perception is necessarily

a passive receptive task. Simply put, the lower level auditory stages may not be

able to act independently to identify the phonemes without higher level sources

such as morphology, syntax and semantics (Pisoni and Remez, 2004). However,

human hearing experiments have repeatedly shown the determinant role of the

lower level acoustic cues such as voicing onset time (VOT) in voicing detection

and phoneme recognition (Zue, 2004). Categorical perception is also observed

in infant studies, where babies with no prior linguistic knowledge tend to ignore

within-class differences and enforce cross-class contrast during speech acquisition

(Boets et al., 2007). Thus, it is feasible to assume that the auditory chain can gen-

erate phoneme strings, or approximation of such, e.g., phone classes, independent

of higher level semantic knowledge.
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2.3 Digital Speech Processing

The digital representation of speech includes the time-domain and the frequency-

domain methods.

2.3.1 Time-domain Analysis

Human speech is composed of short quasi-stationary intervals of about 10 to 30

ms duration, when the characteristics of the waveform remain roughly invariant

(Schafer and Rabiner, 1975). The concept of short-time analysis is the key to

obtain adequate parametric representations of the speech. For a real discrete-

time signal x(n), its energy is,

E(n) =

∞
∑

n=−∞

x2(n) (2.1)

For the non-stationary speech signals, it is more appropriate to calculate the

energy as the following,

E(n) =

N−1
∑

m=0

w(m)x(n−m)2 (2.2)

where N samples of x(n) is selected through a weighing window w(m). It can

be viewed as the sequence x2(n) being filtered by a finite impulse response filter

w2(n). The choice of window function w(m) and segment length N determines

the quality and accuracy of the signal energy measurement. E(n) separates voiced

speech segments from unvoiced ones.

Unvoiced sounds usually have much lower energy level than voiced sounds.

Using autocorrelation, the internal structure of the signal can be displayed. The

autocorrelation function of a discrete-time signal x(n) is defined as,

ϕ(m) = lim
N→∞

1

2N + 1

N
∑

n=−N

x(n)x(n +m). (2.3)

For periodic voiced speech the autocorrelation shows the periodicity of the seg-

ments,

ϕ(m) = ϕ(m+ P ). (2.4)

15



2.3 Digital Speech Processing

For non-periodic unvoiced speech and noise the function has a sharp peak at

m = 0 and falls flat rapidly as m increases. During speech processing the function

is often modified to suit the quasi-stationary property of the signal. The revised

short-time autocorrelation function is defined as

ϕl(m) =
1

N

N
′

−1
∑

n=0

xl(n)xl(n+m), 0 ≤ m ≤ M0 − 1 (2.5)

where xl(n) = x(n+ l) for 0 ≤ n ≤ N − 1, M0 is the maximum observation range

inclusive of at least two periods of the signal. However, the direct computation

of ϕl(m) for 0 ≤ m ≤ M0 − 1 has a complexity proportional to M0 · N , which

can be a significant overhead factor.

2.3.2 Frequency-domain Analysis

2.3.2.1 Short-time Apectrum Analysis

For the quasi-stationary characteristics of speech, fast Fourier transform (FFT)

produces the spectrum. The discrete short-time spectrum of x(n) is defined as,

Xl(ω) =
l

∑

n=−∞

x(n)h(l − n)e−jωn (2.6a)

= |Xl(ω)| ejθl(ω) (2.6b)

= al(ω)− jbl(ω). (2.6c)

One interpretation of (2.6) is that Xl(ω) is the Fourier transform of a sequence

x(n) weighted by a windowing function h(l − n). Another way to understand

the formula is the filter method, i.e., h(n) as the impulse response of a low-pass

digital filter with input x(n)e−jωn and output Xl(ω) at certain frequency ω (2.6b),

which is also a combination of two filters with response an(ω) and bn(ω) as in

(2.6c). The short-time spectrum is defined as

Xl(ω) =
N−1
∑

n=0

xl(n)w(n)e
−jωn (2.7)

where xl(n) = x(n + l), n = 0, 1, · · · , N − 1, and l = 0, L, 2L, · · · .
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The frequency resolution of the spectrum is proportional to the window length

N . Large window size gives better and more complete knowledge about pitch and

vocal tract transfer function information, but at the price of heavier computa-

tional load. There are a variety of methods for estimating fundamental frequency

as well as other parameters such as the resonance frequencies or formants from

the spectrum (Kinjo and Funaki, 2006; Schafer and Rabiner, 1975).

2.3.2.2 Cepstrum Analysis

The spectrum of the FFT spectrum is the cepstrum, a play of words (s-p-e-c

to c-e-p-s). Speech spectrum is the convolution of the excitation and the vocal

tract impulse response based on the principle of superposition. Cepstrum takes

the logarithm of the magnitude of the Fourier transform, i.e., the spectrum of the

windowed signal, of the excitation and the vocal tract impulse response, sums the

logarithms, and applies the inverse discrete Fourier transform. These operations

transform convolution into addition.

Since the cepstrum of a periodic train of impulses will also be a train of

impulses with the same spacing as the input, the cepstrum serves as an excellent

basis for estimating the fundamental period of voiced speech and for determining

where a particular speech segment is voiced or unvoiced (Schafer and Rabiner,

1975). Moreover, the cepstrum is able to show separately the non-overlapped

vocal tract and excitation components. The former is often called the spectrum

envelope, which can be obtained easily by linear filtering, e.g. the fast convolution

method (Rabiner and Schafer, 1978; Ramirez, 2004; Schafer and Rabiner, 1975).

In the cepstrum the presence of a strong peak indicates voiced signal. The location

of the strong peak presented indicates the pitch period. The smoothed envelope

indicates the vocal tract resonances or formant frequencies (Ali et al., 2006; Pitton

et al., 1996).

2.3.2.3 Perceptual Measures

Besides Hertz (Hz), there are two other scales: the perceptual mel-scale and

the psycho-acoustic Bark-scale. as used in the mel-frequency cepstral coefficients
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(MFCCs) and the perceptual linear prediction (PLP) features. Both are convert-

ible with the Hz measure. Convert f Hz to Mel-scale,

m = 2595log10(
f

700
+ 1) = 1127ln(

f

700
+ 1), (2.8)

and the inverse,

f = 700(10m/2595 − 1) = 700(em/1127 − 1). (2.9)

Convert f Hz to Bark-scale,

Bark = 13arctan(0.00076f) + 3.5arctan((
f

7500
)2), (2.10)

or

result =

[

26.81f

1960 + f

]

− 0.53, (2.11)

and

Bark = result +







0.15 ∗ (2− result), if result < 2
0, if 2 ≤ result ≤ 20.1
0.22 ∗ (result− 20.1), if result > 20.1,

(2.12)

and the inverse,

f = 52548/(z2 − 52.56z + 690.39) (2.13)

with z in Bark-scale. Fig. 2.2 shows side by side the mel and the Bark scale filter

banks. The following settings are used,

• Window length: 15 ms

• Time step: 5 ms

• Position of first filter: 1 Bark/100 mel

• Distance between filters 1 bark/100 mel

2.4 Automatic Speech Recognition

There are mainly two types of speech recognizers: the statistical method and the

connectionist method.
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Figure 2.2: Illustration of the mel and the Bark scale filter banks.

2.4.1 Statistical Approaches

2.4.1.1 Hidden Markov Model

The most popular statistical method is the hidden Markov model (HMM), which

has produced many powerful speech recognition engines such as Julius, the hidden

Markov model toolkit (HTK), and Sphinx (Fry, 1959; Klatt, 1977; Lesser et al.,

1975; Rabiner, 1989). It applies a finite-stated Markov model to estimate the

output distributions. An HMM is defined by,

1. N , the number of individual states S = S1, S2, · · · , SN with the state at

time t as qt.

2. M , the number of distinct observation symbols per state V = v1, v2, · · · , vM .

3. The state transition probability distribution A = aij , where

aij = P (qt+1 = Sj |qt = Si) , 1 ≤ i, j ≤ N. (2.14)

4. The observation symbol probability distribution in state j, B = bj(k), where

bj(k) = P (vkat t|qt = Sj) , 1 ≤ j ≤ N ; 1 ≤ k ≤ M. (2.15)

5. The initial stat distribution π = πi, where

πi = P (q1 = Si) 1 ≤ i ≤ N. (2.16)

19

Chapter1/Chapter1Figs/EPS/MelFilterBanks.eps
Chapter1/Chapter1Figs/EPS/BarkFilterBanks.eps


2.4 Automatic Speech Recognition

Given appropriate values of N,M,A,B, and π, the HMM gives an observation

sequence

O = O1O2 · · ·OT . (2.17)

Generally an HMM model λ is given in the compact form of

λ = (A,B, π) (2.18)

to indicate the complete parameter set of the model. HMMs represent an effective

and competitive learning paradigm. New data can be collected and learned during

training to find the optimal estimates of A,B, and π, using, for example, the

maximum-likelihood (ML) criterion. Three parameters need to be calculated

(Rabiner, 1989),

1. the likelihood of a sequence of observations given a specific HMM, i.e.,

P (O|λ),

2. the best sequence of model states, Q = q1, · · · , q6,

3. the adjustment of model parameters (A,B, π).

The first parameter scores how well a given model matches the given observation

such as word sequences. It is usually solved by the forward-backward algorithm

which sums over all possible state sequences to find the overall probability. The

second parameter looks for the optimal state sequence Q for the observation

sequences. A formal technique addressing this problem, based on dynamic pro-

gramming (DP) methods, is called the viterbi search which looks for the most

likely state sequence. The third parameter trains the HMM for optimal global

fitting, which is the most difficult part (Rabiner, 1989). Most HMM training

algorithms use an iterative procedure to approximate global maximization, e.g.,

the expectation-maximization (EM) algorithm and the gradient techniques. The

well known Baum-Welch algorithm is one example of the forward-backward al-

gorithm, and a special case of the EM algorithm (Rabiner, 1989; Trentin and

Gori, 2001; Woodland, 1998). Detailed information about HMM can be found in

(Rabiner, 1989).

Fig. 2.3 shows a simple left-to-right Markov model with 6 states and 6 ob-

servations. HMM-based speech recognizers need to find the optimal λ from the
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training data based on the observation sequence O = O1O2 · · ·O6, e.g., acoustic

features like MFCCs. The probability P (O|λ) in the given model is obtained by

summing the joint probability over all possible state sequences q,

P (O|λ) =
∑

state sequence

P (O|Q, λ)P (Q|λ) (2.19)

=
∑

q1,q2,··· ,q6

πq1bq1(O1)aq1q2bq2(O2) · · · aq5q6bq6(O6). (2.20)

Figure 2.3: The Markov generation model: an example.

2.4.1.2 HMM-based Speech Recognition

Fig. 2.4 illustrates the mathematical model of HMM-based speech recognition.

The human speaker intends to deliver a message M. The central processor, i.e.,

the brain, first forms the message by a sequence of words W. W is further trans-

formed into a sequence of phonetic sounds S. S radiates from the vocal tract and

propagates in the air as Y. Y can be interpreted by the human listener, the ear.

In ASR, Y is converted by a microphone into electric signals. Essentially HMM-

based ASR system reverts the process to retrieve the essential message M. It has

three components: acoustic models of the speech unit, usually phones, a word
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models (also referred to as the lexicon or pronunciation dictionary) with pronun-

ciation entries for each word, and language models giving the probability of word

sequences which is normally estimated from the word transcriptions (Goddeau

and Zue, 1992; Jelinek, 1990; Kuhn and De Mori, 1995; Zue et al., 1990).

Figure 2.4: The structure of a typical HMM-based speech recognizer.

Given the feature vectors for the speech signal Y, the HMM-base speech recog-

nizer finds the most likely word sequence using maximum a-posteriori estimation,

W = P (feature vectors|W )P (W ), (2.21)

where W = W1,W2, . . . is the sequence of words. The right hand side has two

probabilistic models. The first is the acoustic model. It calculates the probability

of the feature vectors given a sequence of words, P (feature vectors|W1,W2 . . .).

Acoustic models are usually defined on linguistic units, e.g.,phones and words.

There exist many types of acoustic models, for example, allophone models, poly-

phones, and allophones. The second is the language model. It calculates the

probability of the sequence of words itself, P (W1,W2 . . .). The most commonly

used language model are the N-gram language model. It assumes that the prob-

ability of any word depends only on the previous N words in the sequence. For

example, a 2-gram or bi-gram language model would compute P (W1,W2 . . .) as,

P (W1,W2,W3 . . .) = P (W1)P (W2|W1)P (W3|W2)P (W4|W3) . . . . (2.22)
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Similarly, a 3-gram model would compute it as

P (W1,W2,W3 . . .) = P (W1)P (W2|W1)P (W3|W2,W1)P (W4|W3,W2) . . . . (2.23)

In practice the language probability is raised to an exponent for recognition, which

is frequently referred to as the language weights. Optimal values of α typically

lie between 6 and 11.

Fig. 2.5 illustrates the HTK implementation of a typical HMM recognizer.

HMM-based speech recognizer consists of two stochastic processes, a hidden

Markov chain, which accounts for the temporal variability, and an observation,

which accounts for the spectral variability. This combination allows speech mod-

els, e.g., phone models and word models, to form a large and complete network

to produce the most likely sequence of words or phonemes in ASR (Cole et al.,

1997; Lee et al., 1992, 1990).

Figure 2.5: Implementation of the HMM-based speech recognizer using HTK.

2.4.2 Connectionism

Connectionist model is another useful paradigm in ASR. It uses parallel collec-

tions of simple processing elements densely connected by weights whose strengths
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are modified through learning and training to mimic the neuron connections in

the human brain. The connectionist structure can directly integrate multiple

knowledge sources, and provides a distributed form of associative memory, which

is known as artificial neural networks (ANN) (Dede and SazlI, 2009; King, 1997;

Lang et al., 1990; Lee et al., 1988; Muller et al., 2006).

2.4.2.1 Artificial Neural Network

ANN consists of individual units termed neurons, as shown in Fig. 2.6. Through

back-propagations, the weights can be adjusted during training when a particular

pattern at the input is observed. The back-propagation algorithm calculates

the difference between the desired and actual outputs and modifies the weights

proportionally (Waibel and Lee, 1992). Speech signal is essentially a left-to-right

time sequence. Several neural network architectures have been developed for ASR

development,

1. multi-layer perceptrons (MLPs): it uses an input buffer, e.g., a sliding

window, to transform a temporal pattern into a spatial one for pattern

matching (Bourlard and Morgan, 1993; Lippmann, 1989),

2. time-delay neural networks (TDNNs): it enables online adaption and pre-

diction of continuous speech data, where output is computed as a function

of the previous input in the time series (Poo, 1997; Waibel and Lee, 1992),

3. Recurrent networks (RNNs) : it accepts sequential input vectors using a

context layer to retain information between adjacent time frames (Robinson

and Fallside, 1991; Schuster and Paliwal, 1997).

2.4.2.2 ANN-based Speech Recognition

Similar to statistical models, connectionist models also require training in ASR.

However, unlike HMMs, ANNs do not make assumptions about the underlying

probability distributions of the data. It has easier hardware implementations

and higher operation efficiency than HMMs (Schwarz et al., 2006). ANNs are ap-

plied for various tasks ranging from simple voiced/unvoiced checking to complex
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Figure 2.6: A classic feedforword neural network.

phoneme classification and word recognition. In static classifications, the neural

network sees all of the input before it makes a decision, e.g., MLPs (King and

Taylor, 2000). In dynamic classification, the neural network sees only a small

window of the input, e.g., TDNNs, RNNs (Bortman and Aladjem, 2009). The

window slides over the input frames while the network makes a series of local de-

cisions, which are integrated to make a global decision. Static ANNs works well

for phoneme recognition, but worse on words recognition compared to dynamic

ANNs (Bourlard and Morgan, 1993; Lippmann, 1989).

A simple experiment performed by Huang and Lippmann demonstrated the

ability of ANNs in ASR. They used MLP with only 2 inputs, 50 hidden units,

and 10 outputs, on a collection of vowels produced by men, women, and chil-

dren. Using the first two formants of the vowels, F1 and F2, as the input feature

vectors, the network produced the decision regions in the acoustic domain after

50, 000 iterations of training (Bourlard and Morgan, 1993; Lippmann, 1989). The

decision regions resembled that of the human listeners. A more complex network

constructed by Elman and Zipser achieved error rates of as low as 0.5% for vowels

and 5.0% for consonants (Elman, 1988). Waibel et al. also demonstrated excellent
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results for phoneme classification using a TDNN (Waibel and Lee, 1992). The

final output is computed by integrating the 9 frames of phoneme activations in

the second hidden layer. Their TDNN was trained and tested on 2000 samples of

/b/, /d/, and /g/ phonemes manually excised from a database of 5260 Japanese

words. It achieved an error rate of 1.5%, compared to 6.5% of their HMM-based

recognizer (Waibel and Lee, 1992). The design of time-delay has several desirable

qualities,

1. the compact structure economizes on weights and forces the network to

develop general feature detectors,

2. the hierarchy of delays optimizes these feature detectors by increasing their

scopes at each layer,

3. its temporal integration at the output layer makes the network insensitive

to the exact positioning of the speech event.

Schuster and Paliwal (1997) also obtained good phoneme recognition performance

using RNNs. In addition, they proposed to integrate two sets of RNNs with time-

delay to account for the contextual information in the speech signal, and achieved

moderate improvements on the Texas Instrument and Massachusetts Institute of

Technology (TIMIT) corpus.

2.4.2.3 Hybrid HMM/ANN Methods

A new family of classifiers combining HMM with ANN has also been developed

and implemented for difficult ASR tasks, the hybrid HMM/ANN (Bourlard and

Morgan, 1993; Kanazawa et al., 1995; Sim and Bao, 1998; Sirigos et al., 2002). It

uses the connectionist structure to model the time-indexed feature vectors gen-

erated by the HMM. Each output unit of an ANN is associated with one HMM

state. Then ANNs generate the posterior probabilities of the state. This proba-

bility can be used as local probabilities in HMMs (Bourlard and Morgan, 1993).

The hybrid approach obtains better or equivalent results compared to the HMM

system. It is also efficient in terms of CPU usage. It has no strong assumptions

about the statistical distribution of the acoustic space, which improves the ro-

bustness even with insufficient training data (Lubensky et al., 1994; Renals et al.,
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1994; Steeneken and Van Leeuwen, 1995). Detailed review of ANNs in ASR can

be found in (Lippmann, 1989; Trentin and Gori, 2001).

2.5 Robustness Techniques

Natural speech contains many variations. ASR applications are especially chal-

lenging dealing with the background noises and the speaker variations.

2.5.1 Noise Contamination

The approaches to improve noise robustness in ASR systems can be grouped into

three categories (Flynn and Jones, 2008; Mitra et al., 2011),

1. the front-end based approach,

2. the back-end based approach,

3. the missing feature theory.

The front-end based approaches usually aim to generate relatively descriptive

and discriminative features for the back-end classifier. For example, spectral

subtraction (Kim et al., 2004), auditory scene analysis (Brown and Cooke, 1994;

Rouat, 2008), and auditory modeling (Flynn and Jones, 2008; Jeon and Juang,

2007) have shown good results on noise robustness. The back-end based approach

focuses on reducing the mismatch between the training and the testing conditions

in the recognizer. For example, different types of noise at different levels are used

to train the back-end models (Gong, 1995; Rabaoui et al., 2004; Windmann and

Haeb-Umbach, 2009). Adaptation methods can also be used as an alternative

to improve noise robustness (Holmberg et al., 2006). Maximum-likelihood linear

regression (MLLR) performs model adaptation by rotating the Gaussian mixture

means of clean HMMs using linear regression without using any prior knowledge

of the background noise (Afify et al., 2009; Mitra et al., 2011; Suh et al., 2007). A

modified version of MLLR was also proposed for piecewise-linear transformation,

where different noise types are clustered based on their spectral characteristics

(Mitra et al., 2011). Separate acoustic models are trained for each noise cluster at
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different signal-to-noise ratio (SNR). During recognition, the best matched HMM

is selected and adapted by MLLR. The third approach, the missing feature theory,

assumes that the speech regions that are contaminated by noise can be treated

as missing (Cui and Alwan, 2005; Gemmeke et al., 2010; Huang and Juang, 2003;

Raj and Stern, 2005). It computes a time-frequency reliability mask to find

reliable regions and the unreliable regions so as to make a binary decision. Once

the mask is obtained, the unreliable regions are dealt with by two methods: 1)

data imputation where the regions are re-estimated based on the reliable ones,

and 2) marginalization where only the reliable regions are used by the back-end

recognizer.

2.5.2 Speaker Variation

In the absence of noise, the speaker-specific variations, e.g., coarticulations and

contextual effects, are the main causes of ASR performance degradation (Cole

et al., 1997; Sankar et al., 2001). The physiological characteristics of individu-

als directly affect the acoustic phonetic qualities (Sankar et al., 2001; Weenink,

2006). Speaker differences are usually dealt with by adapting the acoustic model

to a particular speaker. A simple method is to normalize the vocal tract length

(Claes et al., 1998). In addition, contextual variations can by accounted for by

tri-phone or bi-phone models. These models represent speech as a sequence of

non-overlapping phonetic units. However, they often suffer from data sparsity

and may only capture the contextual influence from the immediate neighbor-

ing phones. For instance, coarticulation can have contextual influences beyond

the immediate neighbors. In this direction, the speech production knowledge

is promising. For instance, the articulatory attributes of phones are slow vary-

ing and much less variant compared with the acoustic attributes (Wrench and

Richmond, 2000).

2.5.3 Articulatory Cues

In recent years, many articulatory based processing methods have been proposed

separately to address the problem of pronunciation variations in a number of

frame-based, segment-based, and acoustic landmark systems (King et al., 2007;
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Scharenborg et al., 2007; Stevens, 2002). Real life articulatory data such as

electromagnetic articulograph (EMA), X-ray analysis, and laryngograph provide

good references for physiological speech studies, but the current techniques are

still invasive and often unrealistic for on-line ASR operations (Richmond, 2009).

Manually derived phonological articulatory features (PAFs) from phonological

rules, e.g., manner of articulation (MOA) and place of articulation (POA), have

also been used in ASR applications (King et al., 2007; Kirchhoff et al., 2002;

Saenko et al., 2005). Speech synthesis models have also been used to search the

acoustic correlates for the highly error-prone phoneme classes in ASR, such as

stops (Blumstein et al., 1977), fricatives (Heinz and Stevens, 1961), and nasals

(Malecot, 1973; Recasens, 1983). Initial research attempted to incorporate speech

production knowledge by deciphering appropriate features to capture articulatory

dynamics. Deng et al. used 18 AFs to describe the place of constriction, horizon-

tal and vertical tongue body movements, and voicing information (Deng et al.,

2004). They reported an average classification improvement of 26% over the con-

ventional HMM system for a speaker-independent task. Phone recognition on the

TIMIT dataset showed a relative improvement of about 9% over the MFCC-HMM

baseline.

Using articulatory trajectory information is challenging because it needs to

retrieve the articulatory dynamics from the speech signal, which is known as the

acoustic-to-articulatory mapping or the speech inversion (Behbood et al., 2011;

Schroeter and Sondhi, 1994; Youssef et al., 2009). One of the earliest works

on acoustic-to-articulatory inversion used temporal decomposition to predict the

corresponding vocal tract configuration from acoustic signal (Atal and Hanauer,

1971). Ladefoged et al. used MLPs to estimate the shape of the tongue in the

midsagittal plane, using the first three formant frequencies in consonant vowel

(CV) sequences. Codebook-based approaches have also been proposed for the

inversion task. Richmond proposed mixture density networks (MDNs) to obtain

flesh-point trajectories, the pellet trajectories, as conditional probability densities

of the input acoustic parameters. Compared with MLPs, MDNs more directly

address the non-uniqueness issue (Mitra et al., 2011; Richmond, 2009). However,

inversion studies have mostly been confined to predicting the dynamics. An alter-

native is to use the articulatory recordings. Frankel et al. modeled the recorded
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articulatory trajectories using phone-specific linear dynamic models. The directly

measured articulatory data in conjunction with MFCCs showed a performance

improvement of 9% over the MFCCs baseline.

Many authors mapped phonemes to the canonical PAFs based on the phono-

logical properties of speech sounds (Kirchhoff et al., 2002; Siniscalchi and Lee,

2009), as shown in Table 2.1. The value nil indicates non-applicable categoriza-

tion. The APFs in this study shares a common ground with PAFs in that they

both embed production knowledge in ASR. However, the pronunciation modeling

method in this study distinguishes the base-forms from the variations of English

phonemes. A more reliable heuristic learning strategy is also designed to retrieve

the APFs for speech recognition experiments. Generally speaking, both PAFs

and APFs are alternatives of directly using recorded physiological data. How-

ever, there are a few notable differences. The proposed APFs are continuous

valued representations, which are closer to actual articulatory realizations than

the manually-mapped discrete-valued PAFs. PAFs have by far taken a domi-

nant position in ASR since they require no additional computations or invasive

recording devices. The mapping between the canonical PAFs and the 61 TIMIT

phonetic base form annotations is straight forward (Frankel et al., 2007; King and

Taylor, 2000; Kirchhoff et al., 2002). For example, the mapping of phones using

the MOA attribute are shown in Fig. 2.7, POA in Fig. 2.8, and voicing in Fig.

2.9.

The following acoustic parameters are used as the mapping criterion as intro-

duced in (Ali et al., 2006):

• Fi: i
th formant;

• V Fi: i
th formant of the neighboring vowel in CV patterns;

• VOT: Voicing onset time;

• BF: Burst frequency;

Normally F1 and F2 are sufficient to map the English vowels and some of the

plosives. F3 would provide some further distinction between formants regions.

Moreover, VOT is known to determine whether a particular stop consonant is
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Table 2.1: PAFs derived from English phonological rules.

PAF Value

MOA
silence, plosive, fricative, affricate,

nasal, approximant, flap, vowel

silence, bilabial, labiodental, dental,

POA alveolar, post-alveolar, palatal,

velar, glottal, glide, diphthong

Voicing silence, voiced, unvoiced

Height
silence, nil, open, middle, close,

glide, diphthong

Frontness
silence, nil, front, central, back,

glide, diphthong

Rounding
silence, nil, unrounded, rounded,

glide, diphthong

perceived as voiced or voiceless regardless of the place of articulation Halliday

and Webster (2006). BF is defined as the most prominentfrequency during the

voicing release,

BF = minj(argmaxiSij), (2.24)

where j is the time during burst, i is the number of filters, and S is the spectral

envelope. The formant transition (FT) is calculated as,

FTi =
maxj(Fij − F(i−1)j)

maxj(Fij + F(i−1)j)
. (2.25)

The thresholds, FT TH and V F TH , in the MOA and POA maps are empirically

defined (Ali et al., 2006).
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Figure 2.7: Illustration of the mapping between the MOA features and the English

phonetic base forms.

Figure 2.8: Illustration of the mapping between the POA features and the English

phonetic base forms.
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Figure 2.9: Illustration of the mapping between the voicing features and the

English phonetic base forms.
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Chapter 3

Adaptive Neural Control Scheme

for Articulatory Synthesis

3.1 Overview

Reproducing the smooth vocal tract trajectories in continuous speech is critical

for high quality articulatory speech synthesis. This chapter presents an adaptive

neural control scheme based on fuzzy logic and neural networks 1. The proposed

controller uses the controller to track the articulatory movements of the human

vocal tract and infer the activation patterns of the underlying muscular structures.

It achieves high accuracy during on-line tracking of the lips, the tongue, and the

jaw in the simulation of consonant-vowel sequences. Furthermore, the controller

manipulates the mass-spring based elastic tract walls in a 2-D articulatory syn-

thesizer to realize efficient speech motor control. The neuron controller serves to

construct the articulatory-acoustic mapping of English phonemes. It also offers

salient qualities such as generality and adaptability for future developments of

control models in articulatory synthesis.

The chapter is organized as follows. Section 3.3 formulates the control of the

articulatory dynamics in the mass-spring based 2-D vocal tract system. Section

3.4 describes the structure, the learning algorithm, and the adaptive laws of the

proposed extended fuzzy neural network (E-FNN) controller. Section 3.5 reports

1The original manuscript of this chapter was submitted to Computer Speech and Language

in July 2012.
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the experimental settings and the simulation results. Section 3.6 discusses the

present and future aspects of speech motor control.. Section 3.7 summarizes the

chapter.

3.2 Control of Articulatory Dynamics

Concatenative synthesis is a popular method in text-to-speech (TTS) applica-

tions. It uses the stored speech waveforms of phonemes or words pronounced

by the human speakers to generate intelligible output. However, its applications

are limited to the available speech and speakers. In contrast, articulatory syn-

thesis simulates the movements of the speech apparatus for TTS applications.

It has a stronger physiological basis and is able to produce a larger number of

utterances than the concatenative method. Moreover, in applications such as the

facial animation (Badin et al., 2002), the medical treatment of speech disorders

(Kröger et al., 2008), and the articulatory-phonetic studies in automatic speech

recognition (ASR) (King et al., 2007), the articulatory synthesis method offers

additional benefits beyond TTS. For example, Mitra et al. (2011) used the artic-

ulatory synthesizer to prepare a codebook of acoustic-to-articulatory data pairs,

and they showed that the inferred articulatory features increased the robustness

toward noise contamination and speaker variations in the ASR systems.

A complete articulatory synthesizer usually includes three functional compo-

nents: an anatomical model, an acoustic model, and a control model. Studies

on the anatomical and the acoustic models have developed rapidly in the past

decades (Birkholz et al., 2007; Buchaillard et al., 2009; Cook, 1990). However,

it remains a challenging task to find an efficient control strategy in current ar-

ticulatory synthesis research. For instance, the control model should be able

to reproduce realistic articulatory trajectories in different phonetic contexts and

even with different speaking rate. Existing models often operate in a codebook

fashion, which applies a set of manually derived linguistic rules to define the

articulatory targets such as the velocity or the position profile of a particular

speech sound e.g., a phone. This kind of synthesis-by-rule approach was initially

implemented in Ishizaka & Flanagan’s cord-tract model (Flanagan et al., 1975)

and Saltzman’s task-dynamic articulatory model (Saltzman and Munhall, 1989).
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Usually each phone has one spatial target in the codebook. The articulatory

movements for the sequential phonetic strings such as syllables, words, and sen-

tences, are generated by interpolating and/or approximating the targets (Birkholz

et al., 2011; Perrier et al., 2005). Different from the codebook approach, Nelson

(1983) suggested that the articulatory movements were the result of optimized

control similar to that of a second-order dynamical system. Löfqvist and Gracco

(2002) supported the view, and they observed that a cost minimization principle

could well explain the trajectory curvature of the articulatory kinematics. Gen-

erally in speech motor control, the equation of motion that governs the dynamics

of the articulators is analogous to a mass-spring damper (MSD) (Kelso et al.,

1986; Kröger et al., 1995; Perrier and Ostry, 1996), which follows Newton’s law,

u+ Fe + Ff = Mz̈ +Bż +Kz, (3.1)

where M, B, and K are the mass, damping, and stiffness coefficients of the speech

articulators, e.g. the jaw, tongue tip, and lower lip in the anatomical model. u is

the input force or the activation level of the muscular structures which control the

TVs. Fe is the external force due to the gravity factor and the air pressure inside

the tract, and Ff is the friction force between the adjacent muscular structures,

which can be assumed to be negligible due to the saliva. We can describe the

articulators using the vocal tract variables (TVs) (Saltzman and Munhall, 1989),

where z, ż, and z̈ are the position, the velocity, and the acceleration parameters,

respectively. For example, the masseter controls the jaw movements. We refer to

the set of muscular activation forces u as the motor variables (MVs).

The equation of motion describes the quasi-incompressibility of the speech

articulators during the speech production. It yields close-loop solutions by choos-

ing the appropriate time-variant variables. For example, Feldman’s equilibrium

point hypothesis (EPH) used the equilibrium positions as the time-variant vari-

ables, the shift of which results in the movements of the articulators (Feldman,

1986). Perrier et al. and Buchaillard et al. applied the EPH control concept in

a finite element model of the tongue, and solved the differential equation using

combined Newton-Raphson and Newmark method (Buchaillard et al., 2009; Per-

rier and Ostry, 1996; Perrier et al., 2003). In contrast, Saltzman and Munhall

(1989) deemed the stiffness coefficients as the time-varying variables. They used
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a pseudo-Jacobian inversion matrix to calculate the gestural control parameters

for the desired articulatory movements in the differential equation. Still their

concept resembles the EPH method, since the stiffness directly affects the veloc-

ity with which the equilibrium length is restored (Boersma, 1998). The concept

is also used in the articulatory synthesizers in (Birkholz, 2005; Kröger et al.,

2009, 1995). However, the method requires explicitly defining the gestural scores

and the activation intervals for the TVs in the control model, which are highly

error prone especially at the phonetic boundaries. Another option is to use the

time-varying input force functions to reproduce the system state profile [ż, z],

the velocity and position trajectories (Kröger et al., 1995). Here the coefficients

M, K, and B assume values that are close to human tissues in the vocal tract.

In this direction, the equation of motion (3.1) simplifies to an ordinary differen-

tial equation. For example, van den Doel and Ascher (2008) formulated a wall

displacement model,

Mz̈(x, t) +Bż(x, t) +K~z(x, t) = p(x, t), (3.2)

where the driving force is the air pressure p inside the tube. Various discretiza-

tion techniques such as the leap-frog scheme in (Boersma, 1998) and the Newmark

methods in (van den Doel and Ascher, 2008) are then used to obtain the solu-

tion during the articulatory and acoustic simulation. One drawback is the high

computation cost which is inefficient for on-line articulatory control.

The dynamic MSD system is highly non-linear and contains uncertainties

which are difficult to describe with precise mathematical model. First, human

vocal system consists of soft tissues as well as bony structures e.g., the hard

palate. Consequently, the MSD system contains unmodeled variabilities in the

M, B, and K parameters, which vary from speaker to speaker (i.e., physiological

differences) and for the same speaker under different conditions (e.g., emotional

states). Moreover, the stiffness of muscular tissues changes during activation

(Duck, 1990; Perrier et al., 2003). Second, during speech production, the model-

ing of constriction is not linear. Though the articulatory movements are smooth

between vowel targets, the transitions to/from the consonants such as plosives,

nasals, and laterals, are not so. For example, when the tongue tip hits the alveo-

lar ridge during [d/t] production, the collision introduces points of discontinuity
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in the vocal tract at the onset of the closure, rendering the model non-linear

(Birkholz et al., 2011). Third, the articulatory movements are also affected by

the phonetic structure of continuous speech, which introduce unmodeled variabil-

ities. Therefore, there is an urgent need for more adequate dynamic modeling

methods to deal with the above issues and to realize efficient speech motor control.

Artificial neural networks (ANNs) have shown advantages in non-linear mod-

eling of dynamic control systems. For example, Saltzman and Munhall proposed

to use Jordan’s recurrent networks (RNN) to incorporate the temporal dynam-

ics and learning algorithm in the control model (Jordan, 1986; Saltzman and

Munhall, 1989). Hirayama et al. (1993) applied ANNs to learn the inverse dy-

namics of speech motor control. More recently Fang et al. used a general regres-

sion neural model to infer motor commands from the articulatory measurements

(2009). However, the fix-structured ANNs usually use a trial-by-error approach

to determine the parameter and structure in the neural controller. As a result,

the controller performance is subject to the experimenter’s decision rather than

the property of the dynamic system. In this aspect, ANNs with fuzzy logic,

or fuzzy neural networks (FNNs) are more appropriate than the fix-structured

ANNs (Wang, 1997). For example, Kröger et al. (2009) used self-organizing maps

to learn the motor commands and the tract variables on the phonetic sequences,

which obtained encouraging results in the articulatory synthesizer.

Previously an adaptive neural controller have been introduced, termed the

generalized dynamic fuzzy neural network (GD-FNN) controller (Er and Gao,

2003; Wu et al., 2001). The controller has shown excellent performance in terms

of tracking accuracy and computational efficiency for several non-linear dynamic

systems with uncertainties, e.g., an inverted pendulum, a robot manipulator (Gao

and Er, 2003), and a drug delivery system (Gao and Er, 2005). In this study,

the adaptive neural control model is applied to reproduce the articulatory trajec-

tories of the vocal apparatus in a 2-dimensional (2-D) articulatory synthesizer.

The GD-FNN can infer knowledge about the articulatory dynamics and stores the

information in the neural structures and the fuzzy logics. The control scheme pre-

sented here is based on an extended version of GD-FNN, referred to as E-FNN.

The E-FNN integrates the radial basis function-based neural networks (RBF-

NNs), the fuzzy inference network, and the RNN in one neural topology. The
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recurrent layer is added to the original GD-FNN to deal with the temporal dy-

namics of the articulatory speech patterns (Jordan, 1986). The E-FNN controller

also embeds a learning algorithm and an adaptive control law to simultaneously

determine the structure and the parameters of the neural topology. The purpose

is to investigate the mapping characteristics of the muscle activities, the MVs,

with the articulatory trajectories, the TVs, in speech motor control. Unlike the

TVs, the MVs are usually hard to measure or not completely retrievable in human

speech production. The E-FNN learns to predict the MVs from the TVs using

the generalization abilities of fuzzy logics and ANNs. The E-FNN model is then

coupled with a proportional integral derivative (PID) controller to manipulate a

MSD system to reproduce the continuous and smooth articulatory trajectories

of the desired consonant vowel (CV) sequences. The tracking accuracy of the E-

FNN controller is reported in comparison with the electromagnetic articulograph

(EMA) data of the vocal tract in CV articulation.

3.3 Articulatory Dynamics

The controllability canonical form for a 2nd order time-variant non-linear system

is (Slotine and Li, 1991),

z̈(ts) = fn(z, ts) + gn(z, ts)u(ts) + dn(ts), (3.3)

where z = [ż, z] is the state vector, velocity and position, of the system, fn and

gn represent the non-linearities of the mapping from the input u to the output

z, and d represents the uncertainties and external disturbances of the dynamic

system, and dn is the unmodeled uncertainties. If we further define the non-

linear dynamic function fn(z, ts) = f(z, ts) + ∆f(z, ts), and the control gain

gn(z, ts) = g + ∆g(z, ts), where f and g are the nominal parts, ∆f and ∆g are

the unknown part or the uncertainties of f and g (Lin and Li, 2012), the canonical

form can be re-written as,

z̈(ts) = f(z, ts) + gu(ts) + d(ts), (3.4)

where d(ts) = ∆f(z, ts)+∆g(z, ts)+dn(ts) is the unknown uncertainties From the

equation of motion of the MSD system in (3.1) and the controllability canonical
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form in (3.4), we have

f = − B

M
ż(t)− K

M
z(t), (3.5)

and

g =
1

M
. (3.6)

Since g 6= 0 for all ~z, the system is controllable (Gao and Er, 2003; Lin and Li,

2012; Slotine and Li, 1991). Furthermore, the function f and d are assumed to

be bounded in human vocal system.

This study focuses on the control of the vocal tract including the lips, the

tongue, and the jaw in a 2-D articulatory synthesizer, as shown in Fig. 3.1,

which was constructed by Mermelstein based on the X-ray image of a human

speaker (Mermelstein, 1973). In particular, the vocal tract has elastic walls anal-

ogous to the MSD. The 12 TVs are the pallet points in Fig. 3.1, including

the x-y coordinates of the tongue root (TR) (TRx, TRy) relative from its neu-

tral or resting position, the tongue body (TB) (TBx, TBy), the tongue tip (TT)

(TTx, TTy), the lower lip (LL) (LLx, LLy), the upper lip (UL) (ULx, ULy), and

the lower incisor (LI) (LIx, LIy). The elastic mass-springs are used to represent

the MVs, which underly the TVs in the 2-D vocal tract. The 8 MVs include

one intrinsic tongue muscle: superior longitudinal (SL), which retracts or flaps

the tongue tip; four extrinsic tongue muscles: anterior genioglossus (GGa), pos-

terior genioglossus (GGp), hyoglossus (HG) and styloglossus (SG), which change

the shape and position the tongue dorsum: body and root; three facial muscles:

masseter (MA) which raises or lowers the jaw, risorius (RO) and orbicularisoris

(OO) which constrict, round, or spread the lips. The vocal cords, shown as the

glottis in Fig. 3.1, are not included in this model for two reasons. First, the

control of vocal cords is more effective with stiffness parameters than the MV pa-

rameters (Flanagan et al., 1975). Second, the vocal cords can cause non-unique

mapping between the TVs and the MVs by compensating the vocal tract change

in speech production (Schroeter and Sondhi, 1994). For example, if we are to

model the simple voicing contrast for the [p/b] and the [t/d] pairs, additional

control variables regarding the timing of glottal excitation need to be specified in

the vocal cords.
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Figure 3.1: Illustration of Mermelstein’s 2-D articulatory mesh and the location

of vocal tract variables.

3.4 Neural Control Scheme

As shown in Fig. 3.2 (a), during off-line training, the proposed E-FNN model

learns the inverse characteristics between the input MV, u, and the output TV,

z, in the dynamic MSD system. Since the exact MVs are unknown, and the

parameters M , B and K vary from speaker to speaker and for the same speaker

in different phonetic contexts, the E-FNN controller uses the reference MVs, ur,

(details given in Section 3.5) and the desired TVs, zd, to learn the system non-

linearities and dynamics through an embedded learning algorithm. Using the

training data pairs, the algorithm determines the structure and the parameters

of the E-FNN, e.g., the number of hidden neurons and the weights systematically

and automatically through an iterative supervised learning (3.4.2). During on-

line tracking, as shown in Fig. 3.2 (b), instead of looking for exact MVs, the

PID controller generates the compensation output and the tracking error at each

sample time for the overall control system. It embeds an adaptive control law,

which uses the error rate as the weight update criteria and stores the system

dynamics and the mapping functions in the E-FNN (3.4.3). In this manner,

the E-FNN controller infers the muscular activation patterns by tracking the

articulatory movements.
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3.4 Neural Control Scheme

Figure 3.2: Structure and data flow in the proposed fuzzy neural controller. (a)

Off-line learning on the training data pairs; (b) On-line tracking of the desired

articulatory trajectories in the MSD based vocal tract system.

3.4.1 E-FNN Structure

The E-FNN architecture is shown in Fig. 3.3, which has a total of five layers.

It incorporates the Takagi-Suegeno-Kang-type fuzzy inference system, the RBF-

NN, and the RNN in a connectionist structure, which is extended from the GD-

FNN (Er and Gao, 2003; Gao and Er, 2005; Wu et al., 2001). The recurrent

layer accounts for the temporal dynamics in speech motor control (Jordan, 1986).

Nodes and links in layer one and two act as a fuzzifier, while nodes and links in

layer four act as a defuzzifier. Here x
(l)
i denotes the ith input of a node in the

lth layer and y(l) denotes the node output in layer l. The function of the node in

each layer is given in the following.

• Layer 1: the input linguistic layer. Each node transmits the input variable
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Figure 3.3: Architecture of the extended fuzzy neural network.

to the next layer directly,

y
(1)
i = x

(1)
i , i = 1, · · · , Ni. (3.7)

For the inverse control model, Ni = 36, which includes the position, velocity

and acceleration of the 12 TVs:[z̈, ż, z] .

• Layer 2: the membership function layer. It specifies the degree to which an

input variable belongs to a fuzzy set using Gaussian membership function,

y
(2)
i = exp{−(xi − cij)

2

σ2
ij

}, (3.8)

where cij and σij , i = 1, · · · , Ni, j = 1, · · · , Nj, are the center and the width

of the Gaussian function for the jth term in the ith input variable. These

parameters are obtained in the learning procedure.

• Layer 3: the rule layer. The number of nodes indicates the number of

fuzzy rules. The output of a rule node indicates the firing strength of its
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corresponding rule, defined as,

y
(3)
j = y(6)

Ni
∏

i=1

x
(3)
i , (3.9)

where y(6) is the output of the recurrent layer.

• Layer 4: the weight layer. The TSK-type fuzzy output weights are obtained

in the structure learning procedure. The node output y
(4)
k : k = 1, · · · , Nk

is the weighted sum of the incoming signals, which is a fuzzy OR operation,

y
(4)
k =

Nk
∑

k=1

x
(4)
k =

Nj
∑

j=1

y
(3)
j wjk, (3.10)

which integrates the fired rules on the same consequence neuron. The weight

is,

wjk = K0 +

Ni
∑

i=1

Kixi, (3.11)

where K’s are manually-set and real-valued parameters.

• Layer 5: the defuzzification layer. Each node in this layer corresponds to

one output variable. The output function is defined as

y(5)o =

∑Nk

k=1 x
(5)
k wok

∑Nk

k=1 x
(5)
k

, (3.12)

where x
(5)
k = y

(4)
k , wok is the link weight from the kth term in layer four to

the oth output variable in layer five, o = 1, · · · , No, and No = Nk. In the

control model, No = 8, which is the number of the MVs in the dynamic

MSD system. The neural function generates a output in [0, 1], which is the

normalized activation level of the MVs.

• Recurrent Layer: it calculates the firing strength of the recurrent variable

rk = y
(4)
k to the rule layer. The number of recurrent nodes is the same at

that of the output node in layer four. The node acts as a delay line to

account for the contextual information in the temporal patterns. The node

function is defined as,

y
(6)
k =

1

1 + e−rk
. (3.13)
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The function can be interpreted as a global membership function, which

remembers the history of discourse in the recurrent variables (Jordan, 1986).

The recurrent outputs are fed back to the rules nodes in layer three, which

stores the firing history of the fuzzy rules.

3.4.2 Learning Algorithm

The learning algorithm enables simultaneous learning of the E-FNN structure

and parameter, which was proposed and implemented in previous studies (Er

and Gao, 2003; Gao and Er, 2003; Wu et al., 2001). Structure learning deter-

mines the number of membership functions in layer two and the number of fuzzy

logic rules in layer three. Parameter learning determines the Gaussian parame-

ters in layer two and the link weights in layer four, i.e., the membership function

y
(2)
i (cij, σij), and the weight parameters wjk. It uses the semi-closed fuzzy set

for membership learning and the linear least square method for weight learning.

Structure learning automatically creates or deletes fuzzy rules according to the

system error and the error reduction ratio in the E-FNN controller. Learning

repeats for each input and output data-pair. The parameters and the structure

of the E-FNN are tuned automatically on the training data. Initially there are

no fuzzy rules in layer three, and they are created or deleted automatically as

the learning proceeds. Detailed mathematical descriptions of the learning algo-

rithm, convergence analysis, and stability analysis of the FNN based controller

in dynamic modeling are given in (Gao and Er, 2003).

3.4.3 Adaptive Control Law

After obtaining the initial value of the weight vector wij during the learning

process, the E-FNN based controller embeds an adaptive control law to adjust the

vector to compensate for the modeling errors in the learning algorithm (Gao and

Er, 2005). In this study, the E-FNN controller is connected with a PID controller

via adaptive control, as shown in Fig. 3.3 (b). The PID controller serves as a

feedback compensator which also stabilizes the inverse dynamic modeling (Gao
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and Er, 2005; Lin and Li, 2012). The adaptive control law is designed as follows,

uc(ts) = uE−FNN(zd, ts)− uPID(ts). (3.14)

The PID control output is given by,

uPID = Kpe(t) +Ki

∫

e(t)dt +Kdė(t), (3.15)

where e is the tracking error, e(t) = zd − z between the desired target position

and the displacement of the MSD. The matrix K = [Kp, Ki, Kd] contains real

numbers, and the proper choice of K affects the convergence speed of the tracking

performance. The adaptive law adjusts the weight vectors in layer three and four

of the E-FNN to minimize the square error E between the desired target position

and the estimated position,

E(ts) =
1

2
u2
PID. (3.16)

The discrete gradient method is used to minimize E. The adaptive law of the

weight vector is derived as (Wu et al., 2001),

∆W = −η
δE

δW
(3.17)

= −η
δE

δuS−FNN

δuS−FNN

δW
(3.18)

= −η
δ 1
2
(uc(ts)− uS−FNN(ts))

δuS−FNN

δuS−FNN

δW
(3.19)

= ηuPID(ts)φ(zd, ts) (3.20)

where η > 0 is the learning rate, a small positive number. In neural network

training, the learning rate determines the speed at which the system converges.

Usually a high learning rate implies high training speed and subsequently better

system performance, yet it may also make the system unstable due to weight

divergence. In other words, there is a tradeoff between the convergence and sta-

bility conditions (Song et al., 2008). For the discrete gradient method used here,

the learning rate is determined empirically, which is set as 0.005 in the controller

(cf. Section 3.5.3, Chapter 3). In the adaptive controller, the parameter is tuned

through trial and error to enable efficient online tracking of the articulatory tra-

jectories.
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3.5 Simulation

Simulation includes two stages: off-line learning and on-line tracking. In the first

stage, the learning algorithm decides the initial weight parameter and the fuzzy

rules of the E-FNN topology. It models the inverse dynamics between the motor

commands and the tract variables. For this stage, we need to train the E-FNN

on parallel MV and TV data. Ideally the training data consists of MVs and TVs

measured on the human speech apparatus, such as the electromyography (EMG)

and the EMA recordings. EMG measures the motor control of the muscular

structures, while EMA measures the corresponding articulatory movements.

3.5.1 Data Preparation

This study extracts the CV sequences from the multichannel articulatory (MOCHA)

database, which consists of two speakers: one male (MSAK0) and one female

(FSEW0), each uttering 460 TIMIT sentences (Wrench, 1999). 807 CV syllables

are available in the training data. Each CV sequence has a syllable initial plosive

(with or without stress) for every combination of the vowels [A, i, e, 6, u] and the

plosives [p/b, t/d, k/g] in the pilot study. The EMA data in MOCHA records

the movements of the articulators, or the 12 TVs. Similar to Mermelstein’s 2-D

model, the bridge of the nose and the upper incisor are the reference point in

the x-y coordinates (Browman and Goldstein, 1992). The trajectory vectors are

z-normalized to have zero mean and unit variance, similar to (Richmond, 2009).

The EMA data have at a sampling rate of 500 Hz.

However, reliable EMG data can be difficult to obtain in articulatory studies,

e.g., through needle insertion (Baer et al., 1988). Baer observed that the tongue

muscles, GGa, GGp, SG, and HG have distinctive level of EMG activation for

the cardinal vowels in [3pVp] sequences. For example, a single threshold of EMG

level can distinguish a front vowel from a back vowel, and each vowel group has

consistent activation patterns (Baer et al., 1988). The claim was supported by

Buchaillard et al. in the modeling of tongue muscles for cardinal vowel produc-

tion (Buchaillard et al., 2009). To this end, an alternative set of reference MVs

are derived from linguistic studies and the existing EMG recordings to initialize

the learning process. As shown in Table 3.1, each phone represents a cognitive
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linguistic unit. It corresponds to the motor activity of the muscles, which are

normalized to the [0, 1] interval to suit the NN input. For example, GGa is acti-

vated (=1) for the front vowel [A], GGp for the high vowels [i] and [u], SG for the

back vowels [6] and [u], and HG for the low vowel [A]. To reduce the variability of

jaw positions, the MA activation is higher for the low vowel [A] and [6] than for

the high vowels [i] and [u]. For the plosive pairs, OO and RO is activated for the

labial [p/b], SL and SG for the alveolar [t/d], GGa and GGp for the velar [k/g].

Table 3.1: Motor variables in the vocal tract and their reference activation levels,

ur, in the plosive-vowel sequences

OO RO GGa GGp HG SG MA

p/b 1.0 1.0 0.0 0.0 0.5 0.0 0.0

t/d 0.0 0.0 0.0 0.0 0.0 1.0 0.0

k/g 0.0 0.0 1.0 1.0 0.0 0.0 0.0

A 0.0 0.0 1.0 0.0 1.0 0.0 1.0

i 0.0 1.0 0.0 1.0 0.0 0.0 0.0

6 1.0 0.0 0.0 0.0 0.0 1.0 1.0

u 1.0 0.0 0.0 1.0 0.0 1.0 0.0

e 0.0 0.0 0.0 0.0 0.0 0.0 0.5

During on-line tracking, the E-FNN controller retrieves the muscular activa-

tions in the CV sequences and reproduces the desired articulatory trajectories.

The reference MVs in Table 3.1 will be updated by the PID compensator on the

phonetic segments. The off-line learning in this study is analogous to the bab-

bling stage in human speech acquisition while the on-line tracking corresponds to

the imitation stage (Bailly, 1997; Kröger et al., 2009). If act alone, the E-FNN

can perform phoneme recognition tasks on the articulatory data, which is similar

to the methods in (Richmond, 2009).

3.5.2 Off-line Training

The E-FNN learning algorithm operates at a sampling rate of 100 Hz. The

MOCHA training data are divided randomly into five sets, four of which are used
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for off-line training, the other one used for on-line tracking. The structure and

parameter of the E-FNN are determined simultaneously on the four training sets

of MV and TV data pairs. Using the learning algorithm, a total number of 23

fuzzy rules are created after training. Fig. 3.4 shows that the root mean square

error (RMSE) converges after training on 250 samples. Unlike fix structured

ANNs, some fuzzy rules in E-FNN share the same membership function, which

improves system efficiency (Gao and Er, 2005).

Figure 3.4: Average RMSE rate of the fuzzy neural controller on MV inversion

using the MOCHA training data.

3.5.3 On-line Tracking

The trained E-FNN estimates the MVs given the desired articulatory trajecto-

ries. It couples with the PID compensator for on-line adaptive control of the

MSD system. The controller manipulates the MSD to infer the muscular ac-

tivation patterns and to reproduce the desired articulatory trajectories in the

2-D articulatory synthesizer. Mermelstein’s 2-D vocal tract model with a tract

length of 17.5 cm is divided into 89 tube sections, with a uniform length of

∆x = 1.966 × 10−3m and a thickness of ∆y = 1 × 10−2m (Boersma, 1998;

Mermelstein, 1973). The tube wall property is measured in the relax cheeks

of a human adult speaker (Birkholz and Jackel, 2004; Ishizaka et al., 1975),

M0 = 21kg/m2, B0 = 8000kg/m2s,K0 = 845000kg/m2s2. The mass, damping,
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and stiffness parameters of the MSD manipulator in (3.1) are calculated as:

M = M0∆x∆y = 4.129× 10−4kg, (3.21)

B = B0∆x∆y = 0.157kg/s, (3.22)

K = K0∆x∆y = 16.615kg/s2. (3.23)

Initial conditions are set as z̈ = 0, ż = 0, & z = 0, when reproducing the CV

sequences. The gains of the PID compensator are set as Kp = 25, Ki = 30, &

Kd = 5. The learning rate is η = 0.005.

3.5.3.1 Articulatory Trajectories

Smoothness is a main property of human speech articulation. Thus the repro-

duced articulatory trajectories in the proposed controller are compared with the

recorded EMA data of human speakers. Table 3.2 summarizes the RMSE of the

controller during on-line tracking. The controller is able to manipulate the MSD

and reproduce the desired position and velocity trajectories with high accuracy.

Some TVs such as LI, TT, and TR demonstrate relatively higher error rates than

others in Table 3.2. The observation suggests that the alveolar and the velar plo-

sives possess a large amount of uncertainties in the CV sequences. In articulatory

synthesis, the plosives are often independently generated using additional energy

source at the constriction of the vocal tract during acoustic modeling (Birkholz

et al., 2011). In practice, many researchers have suggested to reduce the degree of

freedom or the error-prone TVs to increase the system efficiency (Birkholz, 2005;

Ogata and Sonoda, 2003). For example, the jaw movement is often considered as

a secondary feature that smooth the formant patterns during vowel production.

Treated as an inversion mapping module, the E-FNN is comparable to the

neural-based trajectory mixture density network (TMDN) of Richmond (2009)

and the Gaussian mixture model-based maximum likelihood estimation (MLE)

in Toda et al. (2008). Table 3.2 shows that the E-FNN controller obtains similar

RMSE results on the position parameter (z) of the selected articulatory parame-

ters. Its overall error 1.608mm is slightly lower than MLE 1.413mm and TMDN

1.555mm. However, E-FNN emphasizes on the joint accuracy of both the posi-

tion and the velocity parameter, which is not available in previous studies. In this
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study, the retrieved MVs (position and velocity parameters) provide an additional

or alternative set of distinctive features to describe the variability of the surface

acoustic-phonetic events, which are useful for the next-stage speech recognition.

Similar to TMDN and MLE, the proposed neural model also uses a low pass filter

to smooth the APFs to eliminate unrealistic or abrupt articulatory movements

(cf. Section 5.4, Chapter 5).

Table 3.2: RMSE of the estimated articulatory trajectories in comparison with

the EMA recordings.

E-FNN MLE TMDN

z (mm) ż (mm/s) z (mm) z (mm)

ULx 0.67 0.52 0.76 0.91

ULy 1.20 0.81 1.05 1.06

LLx 0.75 0.66 1.12 1.12

LLy 1.04 0.98 1.90 2.22

LIx 2.07 1.36 0.69 0.81

LIy 1.45 1.13 1.02 1.03

TTx 1.65 1.02 2.07 2.10

TTy 2.53 1.64 2.24 1.94

TBx 1.97 1.56 1.94 1.98

TBy 1.90 1.58 1.82 1.78

TRx 2.04 1.74 1.86 1.83

TRy 2.03 1.55 1.90 1.88

Average 1.608 1.213 1.413 1.555

3.5.3.2 Muscular Activations

For adaptive control, it is beneficial to extract the underlying articulatory com-

mands or the MVs to explain the dynamics of the TVs. Fig. 3.5 shows the

motor control signals of two MVs, OO and HG, in the proposed controller for

the reproduction of [bA] sequence. Fig. 3.5 (a) and (d) plot the reference con-

trol signal ur (dashed line) and the inferred control signal uc (solid line), where
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Figure 3.5: The characteristics of motor activation and energy consumption in the

OO and HG during [bA] reproduction. Upper panels (a) and (d) plot the reference

control signal ur (dashed line) and the inferred control signal uc (solid line) in the

fuzzy neural controller; Middle panels (b) and (e) plot the control signal of the

E-FNN, uE−FNN , and that of the PID compensator, uPID, for the MSD system;

Lower panels (c) and (f) plot the control effort or the energy consumption in the

MSD system.

uc = uE−FNN − uPID (Section 3.4, (3.14)). Fig. 3.5 (b) and (e) plot the con-

trol input of the E-FNN, uE−FNN and that of the PID compensator, uPID. The

proposed E-FNN controller demonstrates better performance than the linear com-

pensator in terms of inversion accuracy. The motor activation data agrees with

the measured EMG data of Baer et al. (1988), where the phones have distinctive

targets in the control space. Three things are observed in the data.

1. the motor activation resembles the step response in the MSD. Ogata and
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Sonada have previously used time-invariant linear systems excited by im-

pulse trains to reproduce the velocity profiles of the speech articulators,

which resembles the idea of motor inversion in this study (Ogata and Son-

oda, 2003).

2. the delay between the MV onset and the TV onset (at the boundary of the

gate-like reference control signal) is roughly 30-70 ms, which corresponds to

the reaction time from muscle activation to articulatory motion in human

speech production (Birkholz et al., 2011).

3. the controller is able to model the non-linearities of the articulators during

CV production, which is evidenced by the smooth HG activation curve from

[b] to [A].

In the MSD based vocal track model, the controller moves the articulator back

to the neutral position without oscillation, which mimics the human speech ar-

ticulation (Perrier and Ostry, 1996; Saltzman and Munhall, 1989).

3.6 Discussion

The control model can be integrated with the anatomical and the acoustic mod-

els in a full articulatory synthesizer for TTS applications. However, the control

model needs to specify the prosody information besides the phone sequences, such

as the speaking rate in the input text. One difficulty is that the mapping from the

articulatory trajectories to the acoustic sound is not strictly one-to-one, where

there can be more than one vocal tract-cord configuration that produce the same

acoustic sound in the synthesis system. The issue can be simplified by balanc-

ing the trade-off between the articulatory effort and the acoustic distinctiveness

using an optimal control strategy (Kröger et al., 2009; Perrier et al., 2005). For

speech motor control, the EMG measures are the combined results of efferent and

afferent influences from the bio-mechanical properties of the muscular structures

(Buchaillard et al., 2009; Perrier et al., 2005). The muscular forces can alter the

position and velocity of the articulators. In the proposed controller, we are able
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to examine the excitation pattern and calculate the input energy of the dynamic

MSD system,

E =

∫ ts

t0

u(t)ż(t)dt, (3.24)

where u(t) is the input force, uc, ż(t) is the velocity of the tract wall at time t,

and ts is the sampling time. Fig. 3.5 (c) and (f) plot the energy consumption

in joules (J) of two MVs, OO and HG, during [bA] production. Energy rises

abruptly for OO in the lips when producing the labial plosive [b], but the overall

measure is lower compared to HG when producing the low vowel [A].

In the proposed controller, it is possible to calculate the overall control effort

of the MVs in the articulatory synthesizer, where a minimum energy criterion can

be embedded for optimal control (Kawato et al., 1990). The criterion is analogous

to the speaker-oriented minimum articulatory cost in the functional phonology

of speech production, where the speaker seeks to minimize the articulatory effort

while maintaining the distinctiveness of the acoustic sounds during speech pro-

duction (Boersma, 1998; Browman and Goldstein, 1992). However, the control

energy in Fig. 3.5 (c) and (f) are only relative measures since the MVs are nor-

malized to [0, 1]. For example, the activation of GGp (=1) exerts a force of 25.82

N during [i] production, while the activation of SG (=1) exerts a force of 6.9 N

(Buchaillard et al., 2009). If used for optimal speech motor control, the MVs

should have different prominence. However, Perrier et al. argued that the opti-

mized control is not necessary for the smoothly varying articulatory movements.

They showed that the bio-mechanical characteristics of the speech articulators

alone can answer for such kinematic property (Perrier et al., 2005, 2003). In the

present study, the MVs are extracted for the 2-D articulator with MSD based

tube wall. Therefore, it has limited capability when evaluating the optimal con-

trol strategies. Nonetheless, the proposed controller is the first step toward an

automatically controlled articulatory synthesizer. The inferred MVs can also pro-

vide an alternative set of motor features to describe the acoustic-phonetic events

for improved speech recognition.
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3.7 Summary

The shape, position, and movement of the articulators are the immediate targets

of human speech production (Kelso et al., 1986; Saltzman and Munhall, 1989).

Reproducing these smooth and natural trajectories is critical for high quality

articulatory speech synthesis. This chapter presents an adaptive fuzzy neural

controller, which tracks the measured articulatory trajectories in the form of TVs

and infers the underlying muscular excitation patterns in the form of MVs. Major

characteristics of the proposed adaptive fuzzy neural controller are as follows.

1. The E-FNN controller models the inverse dynamics between the motor com-

mands and the tract variables in an off-line mode, where the structure and

parameters of the neural topology are automatically and dynamically de-

termined on the speech data.

2. The controller deals the uncertainties and the non-linearities in the MSD

system using an adaptive control law.

3. Compared to the fixed structured ANNs, the self-adaptation and learning

ability of the E-FNN controller is more adequate to model the dynamics of

the articulators.

The proposed controller demonstrates good tracking performance on the CV se-

quences. It reproduces the smooth and bell-shaped articulatory trajectories as

observed in the EMA data, and it retrieves the motor activations patterns in the

vocal tract similar to the EMG data.
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Chapter 4

Articulatory Phonetic Analysis of

English Speech

4.1 Overview

The phonetic events exhibit correlated yet distinctive properties in the acoustic,

the articulatory, and the auditory domain. The concept was first introduced in

speech synthesis, and was later used for speech recognition (Yu and Oh, 2000).

The hypothesis is that the articulatory feature space presents a much smaller vari-

ance than the acoustic feature space. This chapter describes a multi-dimensional

pronunciation modeling method to extract these trajectory features for improved

speech recognition, as illustrated in Fig. 4.1. It introduces the non-uniform

segments to represent the pronunciation variations in English speech 1. It also

applies the heuristic articulatory-acoustic mapping to project the highly variate

acoustic signals onto a set of pronunciation models conditioned on the conjoined

principles of human speech production and perception.

For reliable articulatory-acoustic mapping, we need parallel recordings of

acoustic and articulatory signals, discrete or continuous, with accurate phonetic

annotations. Though there are various collections of direct physiological measure-

ments available, e.g., the multichannel articulatory (MOCHA)-Texas Instrument

1The original manuscript was revised and re-submitted to IEEE Transactions on Audio,

Speech, and Language Processing in June 2012. Earlier results of the research were presented

and published in (Huang and Er, 2010, 2012b,c,d).
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and Massachusetts Institute of Technology (TIMIT) corpus (Wrench, 1999), they

are usually too limited for automatic speech recognition (ASR) studies due to

the difficulty of data collection. Moreover, these corpora are generally speaker-

dependent and target-specific, which render them too sparse. On the other hand,

the analysis by synthesis approach has proved to be extremely useful when dealing

with unfamiliar speech events in speech synthesis and speech recognition, such

as out-of-vocabulary words and pronunciation variations. For instance, speech

synthesis models have been used to search the acoustic correlates for the highly

error-prone phoneme classes in ASR, such as stops (Blumstein et al., 1977), frica-

tives (Heinz and Stevens, 1961; Hughes and Halle, 1956), and nasals (Liberman,

1957; Malecot, 1973; Recasens, 1983). In fact, the synthesis method offers a more

explicit and much simpler explanations of the correlation between the articula-

tory gestures and the acoustic realizations. To this end, a bio-mechanical speech

synthesizer with closely monitored physiological properties is used to represent

the average human adult speaker. Then the synthesizer is equipped with the

English pronunciation prototypes and their diacritic variations extracted from an

extensive hand labeled speech database. Finally the rule-based heuristic learning

algorithm is applied to optimize the mapping between the pronunciation models

and the articulatory configurations.

Figure 4.1: Schematic overview of the proposed multi-dimensional pronunciation

modeling method for phoneme recognition.
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4.2 Articulatory Synthesizer

The chapter is organized as follows. Section 4.2 introduces the bio-mechanical

synthesizer, including the mathematical formulation of the human vocal system

and the physiological components. Section 4.3 describes the proposed multi-

dimensional pronunciation modeling method in detail. Section 4.4 simulates

the articulatory-acoustic mapping using example consonant vowel (CV) patterns.

Section 4.5 discusses the observations on the simulation results of the CV patterns,

and elaborates on the bi-directionality of human speech. Section 4.6 concludes

the chapter.

4.2 Articulatory Synthesizer

This section describes the dynamics in an articulatory synthesis system based on

a mathematical formulation of the human vocal system from the glottis to the

lips. The articulatory synthesis system has three physiologically derived compo-

nents: the anatomical/geometric structure (4.2.1), the acoustic wave propagation

(4.2.2), and the gestural control (4.2.3). The bio-mechanical system of Boersma

(1998) is used here to study the motor control of the acoustic and the articulatory

models. Boersma’s articulatory synthesizer specifies the vocal apparatus from the

lungs to the lips as air-filled tube sections which have elastic walls analogous to

the damped mass-spring system, or the mass-spring damper (MSD). It simulates

the articulatory and the acoustic equations simultaneously and systematically,

which echoes the myeo-elastic and aero-dynamic theory of phonation (Bickford,

2006; Titze, 1980). The synthesizer is able to objectively and forcefully span

the articulatory space by bringing the muscular apparatus from their equilib-

rium, maximum, and minimum positions toward the target region. The resulting

acoustic outputs coupled with the articulatory gestures thus form an overall map

of the many-to-one correlation between the the articulation configurations and

the acoustic outputs.

Speech is synthesized with the 89 tube-sectioned bio-mechanical model, which

consists of 28 muscular structures in 12 major groups, as summarized in Table 4.1,

with reference to (Boersma, 1998; Mermelstein, 1973). The controlling parame-

ters are named after the corresponding muscles for simplicity and clarity. The
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4.2 Articulatory Synthesizer

muscular groups assimilate the human anatomy in physiological and functional

properties of speech production (Boersma, 1998), as shown in Table 4.2.

Table 4.1: 28 controlling parameters in the bio-mechanical speech synthesizer.

Major muscular groups Controlling parameters

Subglottal system lungs

Intrinsic laryngeal

interarytenoid, cricothyroid,

thyrovocalis, thyroarytenoid,

posterior cricothyroid,

lateral cricothyroid

Extrinsic laryngeal stylohyoid, sternohyoid

Lower pharynx stylopharyngeus

Epiglottis sphincter

Upper pharynx lower/middle/higher constrictor

Palate levatorpalatini,tensorpalatini

Tongue body and root

verticalis, transversus,

styloglossus, hyoglossus,

genioglossus

Tongue tip upper/lower tongue

Jaw masseter, lateralptergoid

Lip risorius, orbicularisoris

Cheek buccinator

Below the larynx, the respiratory tract has 17 levels of branches between the

trachea and the bronchioles. The number of branches almost doubles at each

level, so there are 217, or about 130, 000 of respiratory bronchioles. Each of the

first order respiratory bronchioles supplies the primary lobule, which contains

about two thousand alveoli, about 3.5 mm in diameter. At the deepest level, the

respiratory bronchioli are connected to 300 million alveoli. These specifications

of the sub-glottal systems yield realistic values for the pulmonic energy source.

When the speaker inhales before articulation, the air pressure in the lungs raises

to 954 Pa relative to the atmosphere pressure with expanded lungs and closed

glottis. When the speaker releases the inspiratory muscles during articulation,
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Table 4.2: Major muscular groups in the bio-mechanical synthesizer and their

physiological properties.

Major muscular groups Physiological properties

Subglottal system Generation of potential energy, i.e., air pressure

Supraglottal cavities Transformation of kinetic energy, i.e., dynamic air-

flow

Larynx Glottal phonation through opening and closing of

the glottis

Velopharyngeal port Regulation of air stream between the oral and

nasal cavities

Tongue Regulation of velaric air stream by changing

shapes of the vocal tract

Jaw, lip, and cheek Regulation of air pressure between oral cavity and

the outside atmosphere

the air pressure in the lungs eventually decreases and stabilizes at about 600

Pa. The volume change of the vital capacity by 10% is close to the pulmonic

relaxation curve of human speakers (Boersma, 1998; Hixon, 1987). In the larynx,

i.e., the voice box, the extrinsic laryngeal muscles have one attachment point

outside the larynx, and the intrinsic laryngeal muscles have both attachments

within the larynx, the coordination of which can realize a pitch range from 50Hz

up to 700Hz which is close to the human capacity (Nunn, 1993).

Another closely modeled critical articulator is the tongue centered in the vo-

cal tract above the larynx. For human speech motor control, the tongue covers

many, if not most, of the functional aspects of phonation. Majority of the tongue

muscles are paired symmetrically on each side of the mid-sagittal plane. This

structure makes the tongue extremely flexible serving its primary purpose of

food mastication and the secondary function of sound articulation. In the syn-

thesizer, the tongue has four intrinsic muscles which change the shape of the

tongue body, i.e., superior longitudinal (SL), inferior longitudinal (IL), verticalis

(VS), and transversus (TS), and four extrinsic muscles which change the position

the tongue body, i.e., genioglossus (GG), hyoglossus (HG), styloglossus (SG), and
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palatoglossus (PG), where the coordinations of GG, HG, and SG are critical for

vowel production. For example, the GG is the largest muscle in the tongue, and

controls the front-back position of the tongue. And a compression force on the

GG will induce a forward displacement of the tongue body and a slight elevation

of the upper part of the tongue, and vice versa. The resulting tongue shapes are

mainly observed for high front vowels such as [i]. In practice, the high front vow-

els also require further compression of the sides on the tongue through the HG

muscle, which consists of two rectangular-like parts on each side of the tongue

body. In functional phonology, the height of English vowels are mainly controlled

by the GG and HG configurations, and could be further refined or adjusted to

enhance audibility by the secondary movements such as the jaw height, which

is mainly controlled by the masseter. The group of SG fibers are located inside

the tongue body laterally. Positive forces produced by the SG bunch the tongue

body backward, and elevate the tongue root toward the velar region, which result

in a backward displacement of the tongue body and a lowered tongue tip. This

resembles the production of velar sounds such as the high back vowel [u] and

the plosive [k]. The former requires lip rounding which is controlled by risorius

and orbicularisoris, and the latter indicates constriction between the SG and the

velar (Badin et al., 2002; Birkholz et al., 2011).

The meshed supra-glottal, pharyngeal and oral cavities of the resulting biome-

chanical model in a neutral position has the articulatory configuration of an av-

erage human adult speakers. For example, the physiological factor f = 1.2 in

the synthesizer produces an average vocal tract length of 16.9 cm which is close

to an adult male, and f = 1.0 results in a vocal tract length (VTL) of 14.1 cm

for an adult female (Bickford, 2006). The average length of the tongue from the

oropharynx to the tip is approximately 10 cm, similar to human. And the lips

are able to protrude/spread to prolong/shorten the VTL by 1− 2 cm as human

speakers do (Bailly, 1997; Bailly et al., 1997). In this study, the muscular pa-

rameters (e.g., activation levels) that control the MSD based tube walls are the

motor variables (MVs). The articulatory parameters (e.g., position and velocity

trajectories) of the corresponding apparatus (e.g., the tongue body) are the tract

variables (TVs) (cf. the control scheme in Chapter 3).
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4.2.1 Soft-body Dynamics: Anatomical Model

Human vocal system resembles a volumetric deformable duct, the walls of which

include a mixture of organic materials such as muscles, fat, and bones. The ar-

ticulatory synthesizer of Boersma (1998) expands Mermelstein’s 2-D vocal tract

structure, which is based on the X-ray tracings of a human speaker (Mermelstein,

1973). The vocal system is modeled as concatenated tube sections filled with air,

the walls of which are modeled as the MSD. The method allows the wall to yield to

air pressure changes during the acoustic simulation (Boersma, 1998). Each tube

section has an uniform length ∆x. The meshed supra-glottal, pharyngeal and

oral cavities of the resulting anatomical model in a neutral position has a VTL of

16.9 cm. The average length of the tongue from the oropharynx to the tip is ap-

proximately 10 cm. And the lips are able to protrude/spread to prolong/shorten

the VTL by 1 − 2 cm (Boersma, 1998). The 8 MVs include superior longitudi-

nal (SL), anterior genioglossus (GGa), posterior genioglossus (GGp), hyoglossus

(HG), styloglossus (SG), masseter (MA) , risorius (RO) , and orbicularisoris (OO).

The muscular structures are independently controllable (Bouabana and Maeda,

1998). The 12 TVs include the x-y coordinates of the tongue root (TR), the

tongue body (TB), the tongue tip (TT), the lower lip (LL), the upper lip (UL),

and the lower incisor (LI) (cf. Section 3.3 in Chapter 3). Each articulatory pa-

rameter represents one degree of freedom. Though the degree of freedom should

be as many as possible to approximated the human system, it should be as few

as possible to avoid exponential increase of the tract shapes in the articulatory

synthesizer (Birkholz et al., 2007; Perrier et al., 2003). The selected TVs have

already shown promising results for consonant-vowel synthesis (Buchaillard et al.,

2009; Perrier et al., 2005) and for phoneme recognition (King et al., 2007; Mitra

et al., 2011).

4.2.2 Fluid Dynamics: Acoustic Model

Acoustic wave propagation inside the vocal tube/duct follows two physic laws:

the equation of motion (i.e., the conservation of momentum) and the equation of
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continuity (i.e., the conservation of mass),

A(x)
∂P (x, t)

∂x
+ ρ

∂U(x, t)

∂t
= 0, (4.1)

∂U(x, t)

∂x
+

A(x)

c2
∂P (x, t)

∂t
= 0, (4.2)

where A(x) is the cross-sectional area of the tube section at position x, P(x,t) is

the pressure at position x at time t, U(x,t) is the volume velocity past position x

at time t, ρ is the air density, and c is the speech of sound in air. Since the area

function is constant, Am(x) = Am, in a tube section m, Webster’s horn equations

can be derived as:
∂2Pm(x, t)

∂x2
=

1

c2
∂2Pm(x, t)

∂t2
, (4.3)

∂2Um(x, t)

∂x2
=

1

c2
∂2Um(x, t)

∂t2
, (4.4)

for the pressure and the volume velocity in the mth tube section respectively.

To solve the partial differential equations, there are mainly three types of

methods or acoustic models for the sound simulation: the Kelly-Lochbaum (KL)

model (Kelly and Lochbaum, 1962), the transmission line model (TLM) (Maeda,

1982), and the hybrid time-frequency domain method (Sondhi and Schroeter,

1987). These articulatory synthesizers separate the vocal tract into a source and

a filter part in the acoustic model. The TLM and the KL model are based on

the analogy between the acoustic tubes and the electrical circuits. The TLM

uses varying tube length, which is not accounted for in the KL model. However,

neither of them models the yielding tube walls due to the air pressure. For

example, van den Doel and Ascher (2008) placed a separate voice source (in the

two-mass glottal model of Flanagan (1972)) and a wall vibration model to address

the above weaknesses of the KL model.

The source-filter separation models are able to produce smooth and natural

vowel sounds much more effectively than the consonantal effects. Moreover, they

all have trouble simulating myoelastic-aerodynamic interactions between the vi-

brating vocal folds and the resonating vocal tract (Boersma, 1998; Mermelstein,

1973; Titze, 1980). One salient property in the two-mass glottal excitation model
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of Flanagan (1972) is the interaction between the voice source and the vocal tract.

The two-mass glottal excitation model specifies three controlling parameters: the

mass, the spring, and the subglottal pressure. In the articulatory synthesizer

of Boersma (1998), the two-mass model was used to construct the walls of the

entire vocal duct. The effects of varying tube length, yielding tube walls, and

turbulent noises are implicitly included during the numerical simulations of the

partial differential equations.

This study focuses on modeling the vocal tract above the glottis. In pre-

vious chapter, the non-linearity and the dynamics of the vocal system was ad-

dressed using the adaptive neural controller. The behavior of glottal excitation in

voiced/unvoiced speech production is also nonlinear. The glottal model is driven

by the lung pressure and the glottal width induced by the tension in the vocal

cords. It requires logical decisions, which are the most costly when implementing

the signal processor (Cook, 1990; Lippmann, 1987). Moreover, the airflow is not

always laminar in actual articulation due to the viscosity of the fluid. Turbulent

noises are generated at the narrowest constriction in the vocal tract, which corre-

sponds to the place of articulation for the consonants, e.g., fricative and plosives.

In this study, Reynolds number is used to indicate the viscous force within the

fluid at the constriction,

Re =
2U

v
√
Aπ

, (4.5)

where A is the area of the constriction aperture, U is the volumetric flow through

the aperture, and v is the ratio of the dynamic viscosity against the density,

v ≈ 0.15cm2/s for dry air. Turbulence occurs when the Reynolds number exceeds

a critical value, Rec. The burst frequency (BF) in the spectrum of the turbulent

noise is,

f =
SU

√
π

2
√
A3

, (4.6)

where S is the Stouhal number (Cook, 1990).

The resulting acoustic sound pressure in Pa (N/Mm2) at a distance d from

the lips is (Boersma, 1998),

P (t, d) =
4πρ0
d

[

c · ∂ (A89(t)∆y89(t))

∂t2
+

m=M
∑

m

1000∆xm∆zm
∆ym
∂t

]

, (4.7)
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whereM = 89 is the total number of tube sections in the meshed model, ρ0 = 1.14

kg/m3 is the reference air density inside the vocal organs, A89(t) is the lip area

that modifies degree of lips rounding, ∆y89(t) measures the degree of of lips pro-

truding, and c accounts for the air leak through the nose. The acoustic sound of

the synthesizer is the linear superposition of the lip radiation, the nasal radiation

and the turbulent noise, which are observed in plosives, nasals, and fricatives.

The acoustic sounds are sampled at 22, 050 Hz, whereas the articulatory configu-

rations are sampled at 100 Hz. The aerodynamic and myoelastic transformations

are computed 100 times every second.

4.2.3 Articulatory Targets: Control Model

The widely used control input is the articulatory gestures that are derived in the

task-dynamic approach (Browman and Goldstein, 1992; Saltzman and Munhall,

1989). Each phone or phonetic sequence is specified by a set of gestures, or

gesture scores (Kröger et al., 1995; Saltzman and Munhall, 1989). Birkholz et al.

(2007) used the control model to transform the gestural scores into a sequence of

vocal tract and vocal fold parameters, which are similar to the TVs in Chapter

3. TVs can be directly transformed into the discrete tube geometry (2-D or

3-D) of the synthesis system (Birkholz et al., 2007; Kröger et al., 1995). TVs

have also been used as articulatory representations of the phonetic events for

speech recognition system (Mitra et al., 2011). Another type of control input is

the muscular activations, which are based on the equilibrium point hypothesis

(EPH) hypothesis or the λ-model (Feldman, 1986). The muscles are the force

generators in this type of control input. Perrier et al. (2005) used the λ-model to

generate all possible motor commands in a 2-D bio-mechanical synthesis model.

They applied the overall map as an articulatory codebook, and used the radial

basis function-based neural networks (RBF-NNs) based inversion model to map

the feature vectors between the motor commands, the tongue shapes, and the

acoustic sounds. Buchaillard et al. (2009) used the λ-model in a 3-D tongue

structure to examine the impact of muscular control on the tongue shape and the

generated French vowel sounds.
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In the task-dynamic approach of Saltzman and Munhall (1989), the immediate

targets: the shapes and positions of the articulators are fed to the articulatory

synthesizer. One target per phone is specified. Target interpolation and ap-

proximation methods are used to generate the articulatory movements, e.g., the

position and velocity profiles, in the phonetic sequences (King et al., 2007; Perrier

and Ostry, 1996; Perrier et al., 2003). In the EPH approach of Feldman (1986),

the muscular activities: the activation force in the articulators are fed to the ar-

ticulatory synthesizer. The dynamics of the articulators are usually modeled by

linear 2nd order system in analogy to the MSD system (Buchaillard et al., 2009;

Perrier and Ostry, 1996). The shifts of the equilibrium positions of the speech

articulators induce the articulatory movements (Feldman, 1986). In this sense,

the EPH approach resembles the target approximation method (Birkholz et al.,

2007). In TTS applications, the task-dynamic approach allows easy manipula-

tion of the speech targets. However, Kröger et al. (1995) pointed out that the

articulatory targets are not well fitted when compared to the smoothly varying

trajectories of human speakers. They introduced a time-variant force function to

approximate the transitional changes of the articulatory trajectories at phonetic

boundaries (Kröger et al., 1995). In contrast, others used a higher order dynami-

cal system to reproduce the articulatory trajectories (Birkholz et al., 2007; Ogata

and Sonoda, 2003).

In Boersma’s bio-mechanical synthesizer, the input to the control model are

the MVs, which control the length and tension of the muscles (Boersma, 1998).

The muscles form the walls of the vocal ducts from the lungs to the lips. The wall

displacement caused by the muscular forces follow the 2nd order equation in the

MSD system . In the dynamic control model, the MSD is critically damped, which

avoids target overshoot in the vocal tract movements (Kelso et al., 1986). The

tube walls of each articulator are described by width ∆x, length ∆y, and depth

∆z. These muscular groups assimilate the human anatomy both in physiological

properties and in functionality of speech production. The articulatory model

is configured to resemble an average human speaker (physiological factor f =

1.1), whose characteristics are listed in Table 4.3. The damping factor is 0.945

for an open wall in the tongue apparatus, and it assumes a critical value of 1

for closed walls to model the extra stiffness, which approximates a modal voice
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with a normal rate of speech to agree with the Spoken Corpus Recordings in

British English (SCRIBE) recordings (Perrier and Ostry, 1996). Timing in speech

production requires a higher level of gestural activation model which are capable

of intrinsic coordination of phonetic sequences (Boersma, 1998; Saltzman and

Munhall, 1989). By specifying the start and the end time of muscular activities

in the control model, the timing of the phones and the phonetic boundaries are

explicitly defined in the pilot study of CV sequences. In the natural speech

database, the timing information is extracted from the phonetic label file.

Table 4.3: Parameter settings of the articulatory based speech synthesizer.

Value Unit

Sizing factor: f 1.1 1

Tissue wall thickness: ∆y 1.0 cm

Tissue wall mass density:ρ 1.0× 101 kg/m2

Linear spring constant:k1 1.0× 106 N/m3

Cubic spring constant:k3 0 N/m3

Linear tissue stiffness:s1 5.0× 106 N/m3

Cubic tissue stiffness:s3 2.5× 1013 N/m3

4.3 English Pronunciation Modeling

4.3.1 Pronunciation Models

A set of 255 pronunciation models are used to annotate the articulatory-acoustic

data from a parental speech corpus, i.e., the SCRIBE-TIMIT dataset (Hierony-

mus et al., 1990; Millar et al., 1994). In this stage, the bio-mechanical articulatory

synthesizer is coupled with the parental corpus, which consists of 100 phoneti-

cally rich TIMIT SX sentences (Garofolo et al., 1993) repeated by 5 native En-

glish speakers, 4 male (MAC, MAE, MAF, MAM) and 1 female (FAA), with the

received pronunciation (RP) accent. There are two reasons that the SCRIBE-

TIMIT corpus is chosen. On the one hand, SCRIBE-TIMIT gives 255 detailed

phonetic annotations by trained professional linguistics, which clearly distinguish
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the true base-forms of English phonemes from their allophonic variation using

the extended Esprit Speech Assessment Methodology Phonetic Alphabet (X-

SAMPA) labeling scheme encoded in ASCII. In contrast, while the conventional

61 TIMIT annotations encoded in Arpabet may be sufficient for experienced hu-

man speakers and listeners, they often indulge problematic assumptions, e.g., the

independence of phonetic features and the quasi-stationarity of speech sounds.

On the other hand, the SCRIBE-TIMIT corpus preserves meaningful knowledge

sources such as the minimum audible changes of phonetic qualities, and it bal-

ances the trade-off between the perceptual invariance of human listeners and the

articulatory effort of human speakers on the same set of sentences. These details

render the selected corpus more descriptive the TIMIT database and more com-

pact than the physiological database such as the electromagnetic articulograph

(EMA) recordings for multi-dimensional phonetic representations.

CV patterns have been widely used as a testbed for speech recognition and

synthesis experiments. They are the basic building blocks which are more de-

scriptive than isolated monophones, and at the same time more compact than

the composed words and sentences. Furthermore, they preserve the dynamics of

natural speech including the coarticulations effects in the consonantal onset, the

transitional region, and the vowel nucleus in great detail. This simulation study

focuses on two sets of natural speech sounds. The first set consists of the six

plosives: [b, p, d, t, g, k], representing the three pairs of voicing contrast with

constriction at the lips: [b/p], the alveolar: [d/t], and the velar: [g/k], along the

tongue continuum. The second set consists of the four primary cardinal vowels:

[A, i, 6, u], representing the four coordinate positions in the vowel chart, and

schwa: [@], representing the neutral vowel sound.

Table 4.4 shows the values of six MVs: OO, RO, GGa, GGp, HG, SG, and

MA, at the target articulatory positions for the base-forms of 6 plosives, i.e., [b,

p, d, t, k, g], and 5 primary cardinal vowels i.e., [A, i, @, 6, u]. The maximal and

minimal moving ranges of the muscle width are normalized to be in the [−1,+1]

interval. The range is equivalent to that of the normalized MVs [0, 1] in Table 3.1

(cf. Chapter 3). The negative interval is used here to give a clear representation in

the articulatory domain. A value outside this range indicates extra compressive or

de-compressive myoelastic tension of the tissues but does not introduce further
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vocal tract deformation. For the highly elastic tongue muscles, the boundary

values would result in constriction at certain parts of the vocal tract walls. In

previous works, the extreme articulatory conditions are also referred to as the

virtual target, since the tongue does not actually reach these extreme positions

outside the vocal tract (Birkholz et al., 2011). The controlling parameters are set

according to the phonological definitions of the phonemes and the X-ray image of

human objects during speech productions (Jones, 1972). The standard phonetic

base-forms using international phonetic alphabet (IPA) annotations, the broad

phoneme form using the Arpabet, and the narrow phonetic form using X-SAMPA

annotations are listed side by side. For simplicity, IPA symbols will be shown

in square brackets, Arpabet in forward slashes, and X-SAMPA in double slashes

when they appear. The full listing of the X-SAMPA symbols is available from

(Wells, 1997).

For the three types of plosives, i.e., bilabial [b, p], alveolar [d, t], and velar [g,

k], there are two stages of articulation, closure and release, where the distinction

between voiced plosives [b, d, g] and their unvoiced counterparts [p, t, k] depends

on the intervocalic period from the lip closure to the vocal fold vibration, i.e.,

VOT, which is the voice onset time (VOT) . In general the VOT threshold of

voiced-unvoiced separation has the highest boundary value for velar sounds, and

the lowest for bilabial sounds. In this study, the cut-off VOT thresholds for the

plosives at syllable-initial positions are assigned with a 10 ms separation, e.g.,

the labial [b/p] at 30.16 ms, the alveolar [d/t] at 40.13 ms, and the velar [g/k] at

50.02 ms, according to (Stouten and Hugo, 2009; Zue, 2004). However, when the

stops are not in syllable-initial position, the voicing cue is subject to the vocal

fold vibration of the neighboring phonemes (Martin and Jurasfsky, 2008). For

the example used here, the tongue muscles are prepared for the primary vowel [A]

during plosive release to demonstrate the effect of anticipatory coarticulations in

CV production as seen in natural human speech.

Fig. 4.2 shows the articulatory configurations of the bio-mechanical synthe-

sizer for the three pairs of plosives, i.e., [b/p], [d/t], and [g/k] in CV production.

Fig. 4.3 shows the shape, position, and degree of constrictions of the vocal tract

for the five primary vowels: [A, i, @, 6, u], according to the settings in Table 4.4.

The jaw opening is in some way a secondary feature for vowels, since one is still
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Table 4.4: Articulatory configurations of 7 muscles for 6 plosives and 5 primary

vowels during CV production.

Base Broad Narrow OO RO GGa GGp HG SG MA

Closure

b̊/̊p bcl/pcl bv+bc/pv+pc 1.0 0.0 0.0 0.0 0.0 0.0 0.0

d̊/̊t dcl/tcl dv+dc/tv+tc 0.0 0.0 0.6 0.0 0.0 0.0 0.0

g̊/̊k gcl/kcl gv+gc/kv+kc 0.0 0.0 0.0 0.0 0.0 1.0 0.0

Release

b̌/p̌ b/p ba/pa 1.0 0.0 0.0 0.0 0.5 0.0 0.0

ď/ť d/t da/ta 0.0 0.0, 0.6 0.0 0.5 0.0 0.0

ǧ/ǩ g/k ka/ga 0.0 0.0 0.0 0.0 0.5 1.0 0.0

Vowel

A aa A 0.0 0.0 0.0 0.0 0.5 0.0 -0.5

i ih I 0.0 0.0 0.0 0.7 -1.0 -0.7 0.0

@ ax @ 0.0 0.0 0.0 -0.5 0.9 -0.7 0.0

6 ao Q 0.5 -0.5 0.0 -0.9 0.8 -0.4 0.0

u uw U 0.5 -0.5 0.0 0.2 -0.8 -0.4 0.0

able to talk while holding the jaw but not so much while holding the tongue.

Nevertheless, some linguists continue to use the degree of jaw opening to mark

the vowel chart, where high vowels have closed jaws, and low vowels have open

jaws. In this study, the MA is treated as a complementary feature, which actually

increases the second formant value to smooth the acoustic trajectories, e.g., [A].

Additionally the risoris is set to -0.5 to achieve lips rounding for [6] and [u], the

effect of which is not fully visible in the side view of the supra-glottal system.

The velopharyngeal port, i.e., the velum, is closed for all these non-nasal sounds,

where the levatorpalatini has default value 1.

4.3.2 Heuristic Learning Algorithm

The proposed heuristic learning algorithm is analogous to the human experience of

speech acquisition through a language teacher. In other words, the bio-mechanical

synthesizer is supervised by the native English speakers alongside the linguists in

the SCRIBE corpus. The algorithm minimizes the within-class scatter distance,

and maximize the across-class scatter distance for improved phonetic clustering.

The maximal and minimal moving ranges of the controlling parameters, MVs,
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4.3 English Pronunciation Modeling

(a) Bilabial: [bA], [pA] (b) Dental: [dA], [tA]

(c) Velar: [gA], [kA]

Figure 4.2: Shape and constriction of the vocal tract for three types of plosives:

bilabial, dental, and velar. Dotted line: closure, solid line: release.

in the bio-mechanical speech synthesizer are normalized to [−1,+1] interval. A

value outside this range indicates extra compressive or de-compressive myoelastic

tension of the tissues but does not introduce further vocal tract deformation. For

the highly elastic tongue muscles, the boundary values would result in constric-

tion at certain parts of the vocal tract walls. In previous works, the extreme

articulatory conditions are also referred to as the virtual target, since the tongue

does not actually reach these extreme positions outside the vocal tract (Birkholz

et al., 2011).

The heuristic learning algorithm is defined as follows.

1. Let i be the number of pronunciation models, where i = 1, 2, · · · , 255;
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4.3 English Pronunciation Modeling

(a) Front-low-rounded: [A] (b) Front-high-unrounded: [i]

(c) Schwa: [@] (d) Back-low-rounded: [6]

(e) Back-high-rounded: [u]

Figure 4.3: Tongue configurations for the five primary vowels according to the

articulatory target in Table 4.4. Dotted line: neutral position, solid line: target

position.
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4.3 English Pronunciation Modeling

2. Compute the mean µi(x) and the standard devision σi(x) of the target

auditory cepstral features in the phonetic segment;

3. Apply Rule 1, and compute the relative entropy H(µ, σ) of the synthesized

and the target auditory cepstral features;

4. Apply Rule 2, and compute the production cost CRAT of the articulatory

movements;

5. Set yi(t) = yi(t)± dy, with dy = 0.1 and y ∈ [−1,+1];

6. There are two scenarios:

(a) if H(µ, σ) < H(µ, σ)|y±dy or CRAT > CRAT |y±dy , then repeat step 3

and 4;

(b) if H(µ, σ) ≥ H(µ, σ)|y±dy and CRAT ≤ CRAT |y±dy , then repeat step 3,

4, and 5 for xi and zi;

(c) else set i = i+ 1, i.e., go to the next phonetic label and iterate for all

phonetic segments.

The two heuristic rules are as follows.

1. Rule 1: Listener oriented optimization of acoustic qualities using the rel-

ative entropy measure: H(µ, σ). Since not all of the synthesized acoustic

sound result in audible or meaningful outputs, the auditory features are

extracted to evaluate the synthesized pronunciations. The auditory model

integrated the 23 channel bandpass Gamma-tone filters spaced uniformly

on the bark scale to extract the auditory feature vectors, bark-frequency

cepstral coefficients (BFCCs). The frame rate 10 ms is chosen to match the

sampling rate of the synthesized articulatory data. For feature decorrela-

tion and dimensionality reduction, principle component analysis (PCA) is

applied to the spectral sub-band energy vectors, which generates 12 static

cepstral coefficients. The coefficients are augmented by their first and the

second order derivatives. The derivatives (or delta) coefficients are calcu-

lated using two frames of past context and two frames of future context.
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4.3 English Pronunciation Modeling

Log energy is attached resulting in 39 dimensional BFCCs. This proce-

dure similar to the discrete cosine transform in the mel-frequency cepstral

coefficients (MFCCs) of the baseline (Toda et al., 2008), For unification,

the static PCA coefficients are augmented with delta and acceleration co-

efficients which result in the 39 dimensional feature vectors. The feature

evaluation criterion is the relative entropy measure, H(µ, σ),

H(µ, σ) =

√

√

√

√

39
∑

i=1

(Hs
i −H t

i )
2, (4.8)

where Hs
i and H t

i are the entropy values of the ith coefficient of the synthe-

sized and the target auditory cepstra, and

Hi =

no.offrames
∑

x

µi(x)log
µi(x)

σi(x)
, (4.9)

where µi(x) and σi(x) are the mean and the standard deviation of the cep-

stral coefficients computed from all the time frames in the current phonetic

segment.

2. Rule 2: Speaker oriented minimization of articulatory cost, CRAT . In the

synthesis model, the equilibrium position and the regional articulatory tar-

get (RAT) are defined to monitor the dynamic articulatory transactions,

which have previously been used to improve the performance of speech syn-

thesizers (Birkholz et al., 2011). During regional target approximation, the

phonetic events are projected onto a spread region instead of singular points

in the articulatory domain. The production cost is calculated as the artic-

ulatory effort required or the energy consumed for the muscle structure to

move from the current place to the nearest point in the target region, or to

return to the equilibrium position, defined as,

CRAT =
∂W

∂E
=

2a

b
× ∂(exp(b(I1 − 3))− p(I3 − 1)2)

∂(FF T − I)
, (4.10)

where W is the stored strain energy, E is the Lagrangian strain tensor, I1

and I3 are the first and the third invariant of the deformation tensor E,
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where I1 = 3+2Tr(E), I3 = det(2E+ I), and a, b & p are tuning variables.

The internal force F in the muscle is defined as:

F = M
∂2~V

∂t2
+ B

∂~V

∂t
+K~V , (4.11)

where M is the mass matrix, B is the damping matrix, K is the elasticity

matrix of the bio-mechanical synthesizer, and ~V = [x(t), y(t), z(t)] is the

displacement vector. The minimization of the production cost keeps the

variation of the muscular activities as low as possible near the target re-

gion, and it has a tendency of bringing the articulators back to equilibrium

position, which is in accordance with human speech production (Perrier and

Ostry, 1996).

The heuristic learning specification allows smooth articulatory assimilation,

as well as easy explanations of many consonantal pronunciation variations. It

iteratively span or shrink the articulatory target region to generate the dis-

tributed RATs for the pronunciation models in the resulting articulatory-auditory

database. For each of the 255 phonemes in the validation set, the initial articu-

latory gesture is updated with a 5 ms frame rate to generate the most probable

configurations that result in authentic acoustic qualities. In this manner, the

two criterion iteratively spans or shrinks the articulatory target to generate a dis-

tributed RAT for the pronunciation models in the combined articulatory-auditory

space.

4.4 Simulation on CV Patterns

4.4.1 Vowel Correlates

In the acoustic dimension, vowels are generally much more stationary than con-

sonants. The first two formants in the fast Fourier transform (FFT) power spec-

trum, F1 and F2, to illustrate the multi-dimensional phonetic attributes of the

CV patterns. In the articulatory dimension, the muscular activations of GG,

HG, and OO are used. Fig. 4.4(a) shows the acoustic formant distribution of

the vowel sounds using the standardized logarithm of the first two formants. Fig.
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4.4(b) shows the auditory trajectory of the acoustic formants using linear dis-

criminant analysis. It shows a classification ratio of 75.6% for the vowels. The

reduced vowel, i.e., schwa: [@], is excluded in Fig. 4.4(b). Fig. 4.4(c) illustrates

the articulatory trajectory, i.e., two MVs: GG and HG. The RATs are shown as

darkened gradient with one standard devision.

Two things could be observed. First, the mappings between the articulatory

and the acoustic space on the phonetic patterns are not uniformly distributed,

i.e., the many-to-one problem, which has been a major issue of the analysis by

synthesis approach (Bickford, 2006). Secondly, the tongue proves to be a powerful

and critical factor during continuous speech production. The muscle activities of

each articulator on the tongue continuum can result in significant and audible

change in the auditory space. The vowel height is inversely correlated to F1

value, e.g., the higher the F1 value, the lower or more open the vowel, thus the

more intense the force in the HG muscle, and vice versa.

4.4.2 Consonant Correlates

For the consonantal onsets in the CV patterns, Fig. 4.5 shows the acoustic and

articulatory trajectories of the three pairs of plosives, i.e., bilabial: [b/p], alveolar:

[d/t], and velar: [g/k]. In particular, Fig. 4.5(a) shows the formant map for [b]

and [p] in syllable initial pre-stressed positions in the SCRIBE-TIMIT sentences.

Fig. 4.5(b) plots the discriminant analysis result of the [b/p] contrast using the

formant measure, where a discriminant ratio of 56.3% is obtained. The ratio is

much lower than that of the vowels as expected for the highly dynamic plosives.

Fig. 4.5(c) illustrates the RAT distribution of the MVs: OO and GG for the

plosive in the articulatory domain.

Compared to vowels, the plosives have much more compact definitions in the

articulatory space, where VOT and other variant acoustic properties are simply

caused by the precise timing of vocal fold vibration during articulation. In fact,

VOT is often considered an eminent feature of plosives in speech production and

perception. Fig. 4.6 shows the VOT distribution of the plosives in the recognition

output of the SCRIBE-TIMIT sentences. It is observed that the perception of

stops is rather categorical, where the boundary conditions of VOT value seems
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(a) Acoustic formant distribution
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(b) Linear discriminant analysis

(c) Regional articulatory targets (RATs)

Figure 4.4: Acoustic and articulatory trajectories of the four primary cardinal

vowels: front-low-rounded [A], front-high-unrounded: [i], back-low-rounded: [6],

and back-high-rounded: [u].

to increase as the place of constriction moves backward from the lips to the soft

palate, i.e., [b/p] at 19.1 ms, [d/t] at 33.0 ms, and [g/k] at 45.2 ms. In fact,

it has been shown that human objects tend to perceive the speech sound in a

decision-like yes or no manner, which is different from that of the other sensory

organs such as the in-between decision on the continuously varying color spectrum
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Figure 4.5: Acoustic and articulatory trajectories of the three pairs of plosives,

i.e., bilabial: [b/p], alveolar: [d/t], and velar: [g/k].

perceived by the visual system (Mottonen and Watkins, 2009).

The observation is also in line with the findings that the threshold of sepa-

ration has the highest boundary value for velar, and the lowest for labial sounds

(Niyogi and Ramesh, 2003). The cut-off VOT for syllable initial plosives also

shows a 10.0 ms separation, e.g., the labial [b/p] at 30.0 ms, the alveolar [d/t]

at 40.0 ms, and the velar [g/k] at 50.0 ms (Stouten and Hugo, 2009; Zue, 2004).
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4.5 Discussion

Figure 4.6: VOT distribution of [b/p] and the boundary points of the plosives in

the recognition output.

These values are higher than the results reported here, but remain highly com-

parable, where the VOT boundary values and the separation rather indicate the

difference in VTL of the speaker. This will be interesting for future studies.

4.5 Discussion

The initial hypothesis in this chapter is that the articulatory feature space presents

a much smaller variance than the acoustic feature space. In the acoustic space,

as shown in Fig. 4.4(a) and Fig. 4.5(a), two acoustic measures, formants: F1

and F2, are plotted for the consonants and vowels. In the articulatory space, as

shown in Fig. 4.4(c) and Fig. 4.5(c), the articulatory trajectories, MVs: HG and

GG, are plotted for them. To verify the hypothesis, two cardinal vowels, [A] and

[6], each uttered 100 times by 5 speakers are extracted from the SCRIBE-TIMIT

database. The entropy measure, Hi(µ, σ), for the two formant feature vectors are

[F1(5.93, 1.60), F2(10.14, 2.18)] for [A], and [F1(4.05, 0.16), F2(7.85, 3.02)] for [6],

all units in bark. In continuous speech, [A] is often in a reduced form with a rela-

tively large F2 variance that causes mis-classifications evidenced by the overlaps

in Fig. 4.4(b). In the articulatory space, two MVs, GG and SG, are actually the

principle controlling parameters for the tongue body forwarding and back-raising

motions that distinguish [A] from [6]. Through iterative learning, the RAT is

computed as a regional distribution, which reduces the acoustic variance within
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4.5 Discussion

each phone class (4.8). The center point of the RAT: (GGµ, HGµ), is located

at the central-front position for [A]:(0.55, 0.30), and at a back position for [6]:

(-0.51, 0.52), as shown in Fig. 4.4(c). The resulting articulatory space is more

compact than the acoustic space.

Furthermore, simulation results on the CV patterns suggest that though VOT

is critical in the articulatory space, the acoustic realizations such as the energy

burst in the consonantal onset and formant transitions in the vowel nucleus may

or may not be fully audible in the acoustic output. Ragnier and Allen (2008) and

Allen (2008) have previously discovered that the perception of [t] is entirely due

to a single short (≈ 20ms) burst of energy, between 4 and 8 kHz. Furthermore,

Li et al. (2010) have also found in their experiments that that consonants with

similar events tend to form a confusion group. For example, [bA] and [vA] are

highly confusable with each other because they share a common F2 transition,

which is strong evidence that the auditory events, not articulatory features alone,

also serve as the basic units for speech perception.

Close examination of the plosives-vowel patterns in the articulatory and the

acoustic spaces also indicates that the identified bursts generally shift up in fre-

quency for high vowels such as [i] but change little for low vowels such as [u], as

suggested in (Li et al., 2010). The observation partly explains the fact that human

speakers tend to maximize the categorical contrast between similar phonemes dur-

ing the phonological encoding of CV syllabus, whereas the consonantal effects on

the following vowels serve to ensure smoothness and continuity of natural speech

(Martin and Jurasfsky, 2008). Furthermore, it shows that the multi-dimensional

phonetic representations offers an alternative to model speech dynamics by uti-

lizing the auditory and acoustic features for speech recognition and synthesis.

Though much remains unknown in the study of human sensory systems and

mental states (Chomsky, 2006), the discovery of mirroring neurons has nonethe-

less suggested the bi-directionality of human speech production and perception

that urges the collective investigation of both aspects to further advance the ma-

chine based speech recognition systems (Levelt, 1999). Previously Guenther et al.

(2006) have constructed a neural model that attempted to organize the accumu-

lated pool of articulatory and auditory data in a framework of humanoid sensory

blocks which are analogous to the brain. Following their footsteps, Kröger et al.
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(2009) have also built a neural model to enable parallel production and percep-

tion of simple syllables such as vowel clusters and CV patterns. However, up

till now, the auditory and the articulatory features have mostly been used either

as additional input streams or as internal representations in conventional ASR

systems such as hidden Markov models (HMMs) (Siniscalchi and Lee, 2009),

multi-layer perceptrons (MLPs) (Kirchhoff et al., 2002), time-delay neural net-

works (TDNNs) (Schuster and Paliwal, 1997), RBF-NNs (Yousefian et al., 2008),

dynamic Bayesian networks (DBNs) (Frankel et al., 2007), and various hybrid

paradigms (King et al., 2007; Trentin and Gori, 2001). The main difficulty in

their ASR deployment is the non-linearities of the correlated articulatory and

auditory features, which could result in undesirable feature redundancy as well

as increased computational cost. For instance, many articulatory configurations

could produce the same acoustic output, i.e., the many-to-one problem (Perrier

and Ostry, 1996). On the other hand, human perception of speech is somewhat

categorical, which projects the highly variant acoustic signals onto a limited set

of meaningful phonemes (Chomsky, 2006). These issues will be addressed in the

next chapter.

4.6 Summary

The articulatory trajectories and the acoustic qualities are two important aspects

of the human speech. The proposed pronunciation modeling method roots in the

concept that the highly variable and dynamic speech pattern can be decorrelated

by the parallel speech production/perception mechanism, i.e., the motor represen-

tation in the articulatory channel and the perceptual cues in the auditory channel

(Davis and Johnsrude, 2007; Scott and Johnsrude, 2003). This chapter clarifies

the correlation of the parallel articulatory and auditory cues in natural English

speech. It emphasize on the multi-attribute modeling of English pronunciations.

The simulation study examines the absolute and the relative acoustic variance

caused by different articulator gestures using the CV patterns. It verifies the

hypothesis that the articulatory feature space is more compact than the acoustic

feature space. The proposed multi-dimensional pronunciation modeling method
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has several salient properties, such as the explicit control of the vocal appara-

tus movements. For instance, the bio-mechanical speech synthesizer mimics the

human experience of speech acquisition. In addition, the articulatory-acoustic

cues are mapped by two heuristic learning rules: the listener-oriented categorical

speech perception and the speaker-oriented articulatory target approximation.

Compared to conventional methods, the articulatory-acoustic pairings are more

objectively distributed. This is beneficial for acoustic-articulatory inversion in

the next chapter.
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Chapter 5

Articulatory Phonetic Inversion

for Improved Speech Recognition

5.1 Overview

This chapter investigates the use of production knowledge in automatic speech

recognition1. It answers two key questions: how the articulatory data can be re-

trieved from the acoustic speech signal, and how the data can be used to improve

the accuracy and the robustness of the recognition system. First, a synthetic

speech dataset is constructed using the articulatory synthesizer. Next a cluster-

ing scheme is proposed too prepare the data for acoustic-to-articulatory mapping.

Then a neural inversion module is implemented to retrieve the articulatory pho-

netic features from the acoustic features. Finally the inversion module is extended

to a phoneme recognizer and test its performance in two diverse conditions: with

different speakers and in noisy environments. Experiments show that the mod-

ule preserves the articulatory phonetic details and obtains improved phoneme

recognition performance than the acoustic hidden Markov baseline.

The chapter is arranged as follows. Section 5.2 gives the rationale on us-

ing production knowledge in automatic speech recognition (ASR). Section 5.3

explains the steps to obtain the articulatory-acoustic data through a clustering

scheme. Section 5.4 implements the proposed neural model. Section 5.5 gives

1The manuscript was revised and re-submitted to Speech Communication in August 2012.

Earlier results of the research were presented and published in (Huang and Er, 2011, 2012a).
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the experiments and summarizes the results on speech inversion and on phoneme

recognition. Section 5.6 discusses the experimental results. The chapter concludes

in Section 5.7.

5.2 Speech Production Knowledge

The use of speech production knowledge can enhance the performance of ASR sys-

tems. For instance, the articulatory dynamics describe the smooth and continuous

movements in the vocal tract, which induce the acoustic variabilities of human

speech. Compared to the acoustic cues, the articulatory features/cues/dynamics

are slow varying and are constrained by the physiological property of the speech

apparatus. However, the articulatory dynamics are usually unknown or not read-

ily available in ASR applications. Many articulatory based processing meth-

ods have been proposed to model the acoustic-phonetic variations in a num-

ber of frame-based, segment-based, and acoustic landmark systems (King et al.,

2007; Stevens, 2002). One such method derives the phonological articulatory

features(PAFs) from the phonological rules of speech (e.g., manner, place of ar-

ticulation, and voicing). The PAFs have improved ASR performance over the

acoustic hidden Markov model (HMM) baseline (Frankel et al., 2007; Kirchhoff

et al., 2002; Saenko et al., 2005; Scharenborg et al., 2007). Moreover, direct ar-

ticulatory data have been collected using electromagnetic articulograph (EMA),

X-ray analysis, and laryngograph of the human speakers (Richmond, 2009). In

theory, these data are more accurate than the PAFs in describing the dynamics

of the vocal apparatus. Therefore, many inversion techniques have been proposed

to estimate the articulatory data from the readily available acoustic recordings

(e.g., using microphone).

Mapping the articulatory features with the acoustic features requires a speech

corpus with parallel acoustic and articulatory data. One option is to use the di-

rect articulatory data, such as the EMA recordings in the multichannel articula-

tory (MOCHA) corpus (Wrench, 1999). For example, Richmond (2009) trained a

mixture density neural network to obtain accurate flesh-point articulatory trajec-

tories from the acoustic spectral data. However, the author pointed out that the

network performance degraded due to the inconsistencies in the recordings, which
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were caused by the physiological differences of the speakers (Richmond, 2009). In

addition, the EMA corpus usually has a limited number of uniformly distributed

phonetic events such as diphthongs and dialectics. This makes training difficult

in the acoustic based HMM recognizers especially for continuous speech. Another

option is to construct an articulatory codebook. For example, Mitra et al. (2011)

generated a synthetic database containing the articulatory-acoustic data pairs

using an articulatory speech synthesizer. The method has also obtained good

performance for a series of acoustic-to-articulatory inversion experiments (King

et al., 2007; Schroeder, 2004; Schroeter and Sondhi, 1994). One advantage of the

codebook method is that the new data can be generated easily by the synthesizer

at any time. This is especially useful when dealing with unfamiliar speech events

such as out-of-vocabulary words and phonetic variations. Furthermore, the phys-

iological parameters such as the lung pressure and the vocal tract shape can be

explicitly defined in the synthesizer, which renders the generated codebook more

consistent than the EMA recordings (Boersma, 1998; Merhav and Lee, 1993).

This study uses an articulatory synthesizer developed by Mermelstein (1973) to

prepare a synthetic dataset. Moreover, the neural based articulatory phonetic

inversion (API) model addresses the non-linearity issue in inversion and recogni-

tion experiments. The API model includes two concatenated neural modules as

shown in Fig. 5.1. The inversion module uses Elman’s recurrent networks (RNN)

to estimate the articulatory parameters. It is initially trained on a synthetic

dataset to estimate the articulatory phonetic features (APFs) from the acoustic

speech signal. To deal with the non-uniqueness in the articulatory-acoustic data

pairs, the clustering scheme is designed to find the minimum set of acoustic and

articulatory classes. The estimated APFs are smoothed by a low pass filter to

eliminate unrealistic articulatory movements. The second module uses the feed-

forward neural network to classify the phonemes from the estimated articulatory

parameters. It is trained on a natural speech corpus to map the smoothed APFs

to phones, and to phonemes, which are the abstract linguistic units of the English

speech.
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Figure 5.1: Block diagram of the articulatory phonetic inversion model.

5.3 Data Acquisition

5.3.1 Parametrization

There are two methods of obtaining the articulatory-acoustic data pairs from the

articulatory synthesizer (King et al., 2007; Schroeter and Sondhi, 1994). The first

is to define the maximum and the minimum values of the APF parameters, and fill

the bounded region between the extreme positions (Guenther et al., 2006). The

other is to randomly sample the whole articulatory space with all the possible

configurations of the APF parameters (Perrier et al., 2005). The first method only

generates the realistic tract shapes. The second method gives a fair coverage of

all the possible tract shapes in the articulatory space, but the processing time is

often high, where Mitra et al. (2011) reported that it would take 85 seconds to

generate a mono-syllabic word, e.g., the word “one”.

Since the phonetic event occupies a spread region, rather than isolated points,

in the articulatory-acoustic space (Damper and Harnad, 2000; Kielar et al., 2011;

Mottonen and Watkins, 2009), the first bounded region method is used to gener-

ate the required data. The midsagittal view of the vocal tract in Mermelstein’s

synthesizer is drawn again in Fig. 5.2, produced using the PRAAT software

(Boersma, 1998). This study focuses on measuring the articulators which are

critical for human speech production. The set of 13 APFs include the relative

position of the tongue root (TRx, TRy), the tongue body (TBx, TBy), the tongue
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tip (TTx, TTy), the lower lip (LLx, LLy), the upper lip (ULx, ULy), the glottis

width (GW), the jaw angle (JA), and the velum opening (VO). The tract vari-

ables (TVs) are parameters used in the articulatory synthesis experiments, and

APFs are parameters used in the speech recognition experiments. Different from

the TVs, APFs include the glottis and the velum settings (cf. Section 3.3 in

Chapter 3 and Section 4.2.1 in Chapter 4). Each APF represents one articula-

tory dimension. The synthetic data is generated in two steps. First, the extreme

geometric shapes of the vocal tract are defined. The boundary or maximum APF

values are based on the observations of speech synthesis experiments and EMA

measures. Except for JA which is in radian (rad), the others are in mm. Sec-

ond, the target regions are randomly sampled into uniformly distributed pallet

points, the regional articulatory targets (RATs). The method prevents the artic-

ulatory synthesizer from generating unrealistic vocal tract shapes, and it gives a

fair coverage of all the possible tract shapes without processing the whole artic-

ulatory space. There are totally seven articulatory target regions for the English

phonemes, as shown in Table 5.1.

Figure 5.2: Vocal tract geometry and the pallet positions of the APFs.

During simulation the articulator moves from a neutral/resting position or one

RAT point to another RAT point. The articulatory synthesizer uses a normal

speaking rate with 50 ms silence at the beginning and the end of each utterance

(Mermelstein, 1973). The pitch range is between 60 Hz (male) to 300 Hz (female),
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Table 5.1: Articulatory target regions and the 45 English phonemes.

Region APF Boundary (mm) Phonemes

Lips

ULx 20

p, b, v, f, m, w, ow, oy, uh, uw;
ULy 15

LLx 20

LLy 15

Tongue tip
TTx 20 ch, sh, th, dh, s, z, t, d, dx, l, r,

y;TTy 20

Tongue body
TBx 12 sh, r, aa, ae, ah, aw, ay, eh, er,

ey, ih, iy, ow, oy, uh, uw;TBy 18

Tongue root
TRx 10

k, g, ng, er;
TRy 10

Glottis GW 2 b, d, g, z, v, dh, aa, ae, ah, aw,

ay, eh, er, ey, ih, iy, ow, oy, uh,

uw;

Velum VO 5 m, n, ng

Jaw JA 1.2 (rad) aa, ae, ah, aw, ay, eh, er, ey, ih,

iy, ow, oy, uh, uw;

Silence bcl, pcl, dcl, tcl, gcl, kcl, sil (pau).

which is typical for human natural speech. For monophthongs, the transition time

from the rest position to the selected RAT is 30 ms. For diphthongs and longer

syllables, the transition from one RAT to another is 20 ms. For example, in

consonant-vowel production the transition from constriction to total release is 30

ms followed by the static vowel articulation. The position of the articulators in

the transition region changes stepwise from one time slice (5 ms) to the next.

Similar settings were also used by Perrier et al. (2003) in their bio-mechanical

tongue model for simulation of consonant-vowel sequences. The acoustic signal is

processed by Bark-scale filter bank to produce the auditory spectra (Brown and

Cooke, 1994; Gajic and Paliwal, 2006). The filter bank consists of 23 overlapping

bandpass Gamma-tone filters each with a bandwidth of 3 Bark. The center fre-

quencies of the filters are uniformly distributed on the Bark scale between 100
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and 4000 Hz. For comparison with the standard mel-frequency cepstral coeffi-

cients (MFCCs), an analysis window (Hamming) of 15 ms with a frame shift of

10 ms is used, which matches the sampling rate of the articulatory parameters.

Principle component analysis (PCA) is used to de-correlate the sub-band spectral

energy vectors and reduce the dimensionality, which produces the static cepstral

coefficients, bark-frequency cepstral coefficients (BFCCs). The first 12 discrete

cosine transform coefficients are augmented by their first and the second order

derivatives. The derivatives (or delta) coefficients are calculated using two frames

of past context and two frames of future context. Log energy is attached resulting

in 39 dimensional BFCCs. The articulator remains in the final RAT for 100 ms.

The sampling rate for the articulatory parameters is 100 Hz. The sampling rate

for the acoustic waveform is 8 kHz.

5.3.2 Data Clustering

The data acquired is the synthetic speech. In the synthetic dataset, there are

initially seven articulatory regions of APF vectors, excluding the silence region.

The main difficulty is that there may be more than one vocal tract shapes in

the articulatory space that generate similar acoustic signals, known as the the

non-uniqueness of speech inversion (Bickford, 2006; Toda et al., 2008). However,

Sondhi and Schroeter (1987) observed that though non-unique in a single global

map, the acoustic-to-articulatory mapping is locally unique after partitioning

based on their acoustic and articulatory similarities. In this study, the RATs of

the articulatory feature vectors are uniformly distributed with equal distance in

the articulatory space, so the clustering scheme aims to further split the synthetic

data-pairs into subclusters based on their acoustic similarities. The clustering

scheme was previously used to reduce the sparsity of features in face recognition

experiments (Er et al., 2005).

Fig. 5.3 illustrates the proposed clustering scheme, where the uniformly dis-

tributed RATs along two articulatory dimensions and the corresponding acoustic

classes are shown in (a) and (b) respectively. The scheme aims to find an optimal

NB acoustic subclusters based on the Euclidean distance of the feature vectors.

Each of the subclusters is located in a scope with a controllable mean radius
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Figure 5.3: Illustration of the proposed clustering scheme.

of γ. The scheme prevents the feature vectors with large variations from being

grouped in the same subcluster. Within each subcluster the acoustic vectors are

close to each other, and the articulatory vectors are also close to each other. If

one acoustic vector (BFCCs), denoted as B, can map to multiple articulatory

vectors (APFs), denoted as A, in at most NA articulatory clusters, the initial

synthetic dataset can be split into a total number of NA×NB subclusters of data

pairs (A,B). The clustering algorithm is as follows:

1. For the ath articulatory region, a = 1, 2, · · · , na, where na = 7 is the number

of articulatory regions. Let nb be number of clusters in the acoustic space,

initially nb = na

2. Find two reference RAT points Aa
i , A

a
j from the ath articulatory region,

which have the largest Euclidean distance daij in the region.

3. Find the two reference acoustic vectors Ba
i , B

a
j from the corresponding

acoustic cluster.

4. Compute the acoustic distance from the two reference vectors to the other

vectors in the acoustic cluster, Ba
k , and k = 1, 2, · · · , nk, where nk is the

number of samples in the ath cluster, using the Euclidean distance in decibel
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(dB):

dik =
10

ln10

√

√

√

√

39
∑
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(Ba
xi − Ba

xk)
2, (5.1)

djk =
10

ln10

√

√

√

√

39
∑

x=1

(Ba
xj − Ba

xk)
2. (5.2)

5. Compute the mean and the standard deviation of the acoustic distance:

µdik =
1

nk

nk
∑

k=1

dik, (5.3)

σdik =

√

√

√

√

1

nk

nk
∑

k=1

(dik − µdik)
2 (5.4)

µdjk =
1

nk

nk
∑

k=1

djk, (5.5)

σdjk =

√

√

√

√

1

nk

nk
∑

k=1

(djk − µdjk)
2 (5.6)

6. Define two circular scopes with centroids at Ba
i and Ba

j in the acoustic

cluster, each with a radius of γa
i and γa

j respectively:

γi = µdik + α · σdik , (5.7)

γj = µdjk + α · σdjk , (5.8)

where α is a positive clustering factor initially set as 1, and its effect on the

inversion process will be evaluated in the experiments.

7. The degree of overlapping between the two scopes depends on the data

sparsity, and it has three outcomes:

(a) If dij ≥ γi+γj , the two scopes do not overlap, split the acoustic cluster

into two subclusters, and update nb = nb + 1;
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(b) ElseIf dij ≤ |γi − γj|, the two scopes overlap greatly, and the cluster is

tight;

(c) Else |γi−γj| ≤ dij ≤ γi+γj, the two scopes overlap, and they form an

eclipse like data distribution; Define a new subcluster with a centroid

at the mid-point between the two reference centroids, and with a radius

of 0.5dij;

(d) EndIf.

8. Go to the next articulatory region; a = a + 1, and repeat step 1 - 7 for all

regions.

9. In the resulting acoustic space, the random samples which do not fall into

any of the subclusters are discarded from the synthetic dataset.

In the extreme cases, if the scope is too large, the training samples may be

overly generalized, which results in too few distinctive clusters. If the scope is

too small (e.g., α = 0), the training samples may form too many clusters, which

increases the computation cost of the mapping.

5.4 Neuron Model

The limitation of many current text-to-speech (TTS) and ASR systems are due

to the fact that they are not faithfully designed with respect to the human neural

processes of speech production and perception. Current ASR systems are subject

to many constrictions such as the vocabulary size, the speaker, and the noise

contamination (Scharenborg et al., 2007). Current TTS systems are also limited

when dealing with the speaker characteristics an the prosodic naturalness (Martin

and Jurasfsky, 2008). These limitations are the main areas that human easily

outperforms the machine based systems. In the literature, a variety of brain

imaging studies have clarified the role of different subcortical and cortical brain

regions for speech production as well as for speech perception. Other studies have

also shown the inter-correlation of the production and the perception pathway

(Kröger et al., 2009). There are few functional neural models which explain

the complex neural sensory-motor and the auditory processes of human speech
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processing. So the proposed model aims to implement the two aspects together,

which is capable of imitating human speech production and perception based on

neuro-physiological and neuro-psychological knowledge of speech processing.

The proposed API model concatenates two modules: inversion and classifica-

tion. The neural topology is shown in Fig. 5.4. Neural networks have shown good

performance in previous speech inversion experiments, where the feed-forward

connections are used to perform a non-linear mapping between the acoustic pa-

rameters and the articulatory parameters (Mitra et al., 2011; Toda et al., 2008).

Here the inversion module implements the Elman RNN in which the hidden layer

units are fed into the input layer (Elman, 1990). The feedback mechanism enables

the RNN to maintain a short-term memory, or the prediction knowledge, from the

input vectors. This is useful in capturing the correlations in the time-sequential

feature vectors such as the dynamics of the articulatory parameters across the

time frames (Schroeter and Sondhi, 1994).

In the inversion module, the RNN infers the articulatory features vectors,

APFs, from the acoustic feature vectors, BFCCs. A low-pass filter with a cut-

off frequency at 15 Hz is used to smooth the APFs by eliminating unrealistic

or abrupt articulatory movements. The smoothed APFs are input to the sec-

ond classification module, where the articulatory parameters are mapped to the

phonemes. The classification module includes a phonetic layer and a phoneme

layer, as shown in Fig. 5.4. The phoneme is a linguistic unit, which may have

more than one acoustic realizations, or phones. One neuron in the phoneme

layer links to several neurons in the phonetic layer. The connections are deter-

mined by the phonetic information in the Spoken Corpus Recordings in British

English (SCRIBE)-Texas Instrument and Massachusetts Institute of Technology

(TIMIT) corpus, where the broad phoneme annotations and the narrow phonetic

annotations are given in parallel on the acoustic waveforms.

The API model has five layers. Layer 1 is the acoustic layer with 39 nodes,

which correspond to the input BFCC with the first and the second derivatives.

Layer 2 is the recurrent layer with 100 nodes. Layer 3 is the APF layer with

13 nodes, which correspond to the number of articulatory channels. Layer 4

is the phonetic layer with 255 nodes, which is the number of narrow phonetic

annotations in the SCRIBE-TIMIT dataset. Layer 5 is the output phoneme layer
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with 45 nodes, which represent the broad phoneme annotations. The activation

function of the output layer is the softmax function,

f(xi) =
exp(xi)

∑K
k=1 exp(xk)

, (5.9)

where K is the number of units in the output layer. The outputs are interpreted as

phoneme probabilities, which sum to 1. The other layers use the tanh activation

function.

Figure 5.4: Neural topology of the API model.

5.5 Simulation

The API model is tested in the speech inversion and recognition experiments.

Initially the synthetic speech dataset optimizes the parameters of the RNN based
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inversion module. Then a natural speech dataset is used for the phoneme recog-

nition tasks on the the API model. The natural dataset is extracted from the

SCRIBE-TIMIT corpus (Huckvale, 2004), which consists of 100 phonetically rich

TIMIT SX sentences repeated by 5 native English speakers, 4 males (MAC, MAE,

MAF, MAM) and 1 female (FAA), all with the received pronunciation.

5.5.1 Acoustic HMM Baseline

The recognition performance of the API model is compared with that of an acous-

tic HMM baseline, implemented using Cambridge’s HTK tools (Young et al.,

2006). The HMM recognizer has 45 context independent monophone models

with 5 states per phone and 15 diagonal covariance Gaussians per state. It also

includes a 3-state silence model, which shares the middle state with a 1-state

short pause model. The acoustic features in the HMM baseline are the standard

39-dimensional MFCCs including the log energy, the 12 static cepstral coeffi-

cients, and the appended first and second derivatives. Different from the Bark

scale filters, the acoustic baseline has 23 triangular filters which are uniformly

distributed on the mel scale between 100 and 3000 Hz with 50% overlap. A pre-

emphasis filter with coefficient 0.97, and a 256 point fast Fourier transform (FFT)

are used. Other settings for the MFCCs are the same as the BFCCs.

5.5.2 APF Inversion on Synthetic Speech

This study report the root mean square error (RMSE) of the estimated articu-

latory parameters, APFs, for the RNN-based inversion module on the synthetic

dataset. It divides the synthetic dataset of the articulatory-acoustic data pairs

into five partitions. Each of the partitions is used in turn for testing, while the

other four are used for training. During the five training sessions, the inversion

module minimizes the RMSE. The clustering scheme defines the scope of each

subcluster using γ = µ+α×σ, which can be interpreted as the acoustic distance

among the training samples. Fig. 5.5 plots the averaged RMSE of the APFs

with different α values. The clustering factor α shows low RMSE between 1.0

and 1.5. For the following experiments α = 1.2 is used, which creates about 170

subclusters in the synthetic data.
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Figure 5.5: Averaged RMSE of the APFs with different clustering factor: α on

the synthetic dataset.

Table 5.2 shows the RMSE results. Here jaw height (JH) is calculated as

the distance from the joint to the upper incisor times the tangent of the jaw

angle. The low-pass filter can effectively reduce the RMSE of the APFs (5%

significance level using t-testing). Toda et al. (2008) have also obtained reduced

error rate using the low-pass filtering in their speech inversion experiments. The

delta BFCCs do not obtain higher accuracies than the low-pass filter. It may

be due to the fact that the smoothed APFs already account for some amount

of the contextual variations in the acoustic input, and the delta coefficients do

not introduce new knowledge sources. In the articulatory space, the RMSE also

shows different characteristics in each APF dimension, as shown in Table 5.2.

For example, the low-pass filter obtains higher RMSE reduction for the TTy and

the JH than the others. The relatively high error reduction rates of the TTy

and the JH values are mainly due to their large dynamic movements in their

articulatory regions for many consonant-vowel syllables. For instance, the tongue

tip is involved for the production of dental plosives (e.g., /t, d/) and the jaw

movement is involved during the articulatory synthesis of the low vowels (e.g.,

/aa, ow/).
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Table 5.2: RMSE of the APFs in the inversion experiment.

RMSE (mm)

Un-smoothed Smoothed Reduction (%)

ULx 0.91 0.77 15.4

ULy 1.13 0.99 12.4

LLx 0.81 0.72 11.1

LLy 1.15 1.10 4.3

TTx 2.09 1.98 5.3

TTy 2.69 2.15 20.1

TBx 2.15 1.93 10.2

TBy 2.12 1.88 11.3

TRx 2.13 1.85 13.1

TRy 2.22 1.92 13.5

GW 0.25 0.21 16.0

VO 0.54 0.51 5.6

JH 2.55 1.96 23.1

Average 1.60 1.38 13.4

5.5.3 Phoneme Recognition on SCRIBE-TIMIT

When using the API model for the phoneme recognition task, it requires two

stages of training. First, the inversion network is updated on the synthetic speech

dataset, called the initialization stage. Second, the classification module is up-

dated on the natural speech dataset, called the bootstrapping stage. Unlike the

inversion task, the API model optimizes the cross-entropy instead of RMSE,

where the phoneme recognition rate is reported. For the natural speech, the

SCRIBE-TIMIT corpus provides detailed acoustic-phonetic information, which

balances the trade-off between the perceptual invariance of the human listen-

ers and the articulatory effort of the native speakers on the set of phonetically

rich SX sentences. It also denotes the minimum audible changes across the pho-

netic annotations as perceived by the linguists in the acoustic speech signal. The

articulatory-acoustic data in the synthetic dataset tunes the inversion module,

where the acoustic-phonetic data in the natural dataset tunes the classification
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module. The proposed API system is trained in clean conditions and tested for

the speaker and the noisy testing.

5.5.3.1 Speaker Testing

The recognition accuracy is the percentage that the frames are correctly classified,

i.e., the frame error rate (FER), which are summarized in Table 5.3. The inside

testing uses the same speakers as from the training set. 80% of the sentences

for each speaker are used for training, and the rest 20% for testing. The outside

testing uses different speakers for the training and the testing. Each of the 5

speakers is used for testing, where the other 4 are used for training. The reported

FER is an average of the 5 test runs.

Table 5.3: Frame level accuracy (%) of the speaker independence testing.

Inside testing Outside testing

Best-1 Best-3 Best-1 Best-3

HMM 82.6 85.4 69.2 80.1

API 88.5 92.3 74.5 83.0

This study compares the phoneme recognition accuracy of the API model

on the SCRIBE-TIMIT data with the acoustic HMM baseline. For both inside

and outside testing, the API model outperforms the acoustic-HMM baseline (5%

significance level). It is possible that the contextual variations in the acoustic

input are represented as the articulatory dynamics in the RNN. In addition, the

phonetic layer in the neural structure explicitly maps the dialectal variations

with the phonemes. The observation agrees with previous claim that the use

of AFs can improve the ASR performance. Different from the phonologically

derived PAFs, the English phonemes are represented as distributed RATs in

the articulatory space (Frankel et al., 2007; Scharenborg et al., 2007). In the

literature, phoneme recognition accuracy as high as 75.6% was reported on the

TIMIT SX sentences using the tandem multi-layer perceptrons (MLPs) with an

adjustable neural structure, where the number of neurons in the hidden layer

of neural networks was increased until the error rate saturated (Schwarz et al.,

2006).
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5.5.3.2 Noisy Testing

This section reports the phoneme recognition performance of the API model in

three noisy settings: the white Gaussian noise, the laboratory noise, and the

bus-stop noise. The laboratory and the bus-stop noise are from the corpora in

(Nasibov and Kinnunen, 2012). They are selected to evaluate the adaptability of

the API model in practical applications. The laboratory has several low frequency

noise sources including the computer working stations, the air-conditioners, and

the background noises inside the lab. The bus-stop has noise sources from the

the passengers, the passing cars, and the engine noise of the buses. In the natural

dataset, 80% of the sentences for each speaker were used for training, and the

rest 20% for testing, which contains 186,342 frames in total.

This study compares the robustness of the proposed method with the cepstral

mean subtraction technique in the MFCC-HMM baseline, where the mean value

of the MFCCs across the input time frames is calculated and then subtracted

from each frame. Fig. 5.6 shows the recognition accuracy of the API and the

HMM recognizers in noisy testing conditions. The phoneme accuracy decreases

with increasing noise levels. The bus-stop noise introduces the highest deduction.

The average accuracy in noisy testing is 74.8 % for the API recognizer, and 66.2

% for the HMM recognizer. The performance improvement confirms that the

articulatory features are more robust against noise contaminations compared to

the acoustic features (Frankel et al., 2007; King et al., 2007; Kirchhoff et al.,

2002). In fact, the APFs represent the underlying articulatory movements which

are less error prone in the presence of noise for ASR. Yet the APFs are inverted

from the clean synthetic corpus, which introduces mis-match between the training

and testing conditions.

5.5.4 Phoneme Recognition on TIMIT

To test the hypothesis that the API module can deal with the pronunciation

variations of natural speech data, the original TIMIT dataset is used in the second

recognition experiment. The available 450 SX sentences produced by 630 speakers

(192 female/438 male), 5 sentences per speaker, from all dialect regions (DR1 to

DR8) were used to test the accuracy of the API model on unfamiliar speech
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Figure 5.6: Recognition accuracy of the API and the HMM recognizers in in-

creasing noisy levels.

events, and no sentence text appeared in both the training and the testing sets.

The testing set contains a total of 168 speakers and 840 utterances, accounting for

about 26.7% of the total speech material. The training set contains 462 speakers

and 2310 utterances, accounting for about 73.3% of the total speech material.

During training, the API classifier is monitored on the 100 validation sentences,

and terminated the process when the global error of back-propagation on the

validation dataset approached static to avoid over-fitting.

Besides the acoustic HMM baseline, this study also implements two types

of artificial neural networks (ANNs) based recognizers, MLP and RNN, with

comparative configurations as in the API model. The MLP classifier consists

of three layers: one input layer with 390 nodes for 10 frames of 39-dimensional

MFCCs, one hidden layer of 300 nodes each with a tanh activation functions,

and one output layer with softmax activation function and 61 nodes. The RNN

classifier has the same settings as the MLP at the hidden and the output layer,

except that it has a time delay of one time frame at the input layer, which

allows the network to infer knowledge about temporal dynamics from the input

feature streams (Schuster and Paliwal, 1997; Strom, 1997). Similar to the API

model, the ANN based classifiers used the cross-entropy objective function as

the optimization criterion. All networks run 55 cycles of the back-propagation

algorithm with a momentum of 0.7 and a gain of 1× 10−7.
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5.5 Simulation

Table 5.4 summarizes the classification results of the seven phoneme recog-

nizers on the TIMIT testing set. For the best-1 FER, the correct label is ranked

the highest in the decoded frame. For the best-3 FER, the correct label is among

the top three labels in the results.

Table 5.4: Frame level recognition results of the different stream lines on the

TIMIT testing set.

FER: Best-1 (%) FER: Best-3 (%)

MFCC + HMM (CI monophone) 48.0 60.4

MFCC + HMM (CD tri-phone) 51.9 62.3

MFCC + MLP (10 frames) 62.0 77.1

MFCC + RNN (1 delay) 68.9 83.1

BFCC + RNN (1 delay) 71.6 85.5

BFCC + API (PAF) 69.0 85.1

BFCC + API (APF) 75.0 85.6

Using the same front end, MFCCs, the four back ends, CI-HMM, CD-HMM,

MLP, and RNN obtained increasing level of accuracy, where RNN outperformed

the rest for both best-1 and best-3 ranking. Similarly, using the same back end,

RNN with 1 time frame delay, the two front ends, MFCC and BFCC, achieved

comparable accuracy, where BFCC gained slightly higher accuracy than MFCC

with 2.7% improvement for best-1 ranking and 2.4% for best-3 ranking. The

average improvement obtained by BFCCs over MFCCs is less than 3%, which

is not as high as that obtained by the RNN over other back ends, where it

outperformed the CI-HMM by 20.9%, the CD-HMM by 17.0%, and the MLP

by 6.9% in the best-1 ranking. This observation shows that the MFCC features

are still in many ways a near optimal representations in current ASR systems,

and that there are more to be gained at the back end using more sophisticated

classification methods.

At the frame level, the use of AFs provides another interesting observation.

The best-1 measures of the two articulatory feature (AF) streams in the API

model show higher FER than the others, and this advantage persists in the best-

3 measures compared with the purely acoustic-phonetic cues. However, the im-
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provement obtained by API model over the RNN model is not absolute, where

PAFs show slightly lower accuracy than the RNNs. The strength of RNN extends

to its utmost in the API module using APFs, demonstrating higher accuracy

in the best-1 and best-3 results than the PAFs, which suggests that that the

continuously valued APFs are more adequate for pronunciation modeling than

the quantized PAFs, especially when the phonetic segments contain a significant

amount of variations as in the SX sentences.

Table 5.5 summarizes the performance of the recognition modules as a function

of signal-to-noise ratio (SNR) on the TIMIT database. Phone recognition accu-

racy are measured against SNR from 0 to 30 dB (clean speech) using artificially

added white Gaussian noise. It appears that not only does the API module lower

the PER, it also shows robustness against noise contamination. The API model

with the APFs sustained its advantage of higher accuracy in noisy settings, and

the performance degradation rate is 0.95% per dB, which is slightly lower than

the others. It is highly probable that the individual AFs, PAFs or APFs, deterio-

rates less strongly than the other acoustic based classifiers, resulting in the robust

performance in adverse conditions (Kirchhoff et al., 2002). Moreover, the use of

the auditory based BFCCs in the API model also suppresses noise contamination

by discarding irrelevant acoustic cues in the signal. And the multi-dimensional

phonetic cues in the API model obtained the best performance in noisy testings.

In Table 5.5, the auditory based BFCCs only shows slightly higher performance

than the MFCCs in the same RNN classifier. Yet the major contribution of the

API superiority comes from the proposed pronunciation models, which are more

accurate and more reliable for articulatory inversion.

5.6 Discussion

High performance phoneme recognition is a challenging task for machine based

speech recognizers. This chapter examines the feasibility of using multiple knowl-

edge sources, i.e., the articulatory and the auditory features, to improve speech

recognition performances. It implements the neural based API model with the

concatenated RNN and MLP structure to realize simple yet elegant speech recog-

nition. This structure elevates the problem of temporal representations in speech
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Table 5.5: The effect of noise contamination on phone recognition accuracy (%)

as a function of SNR (dB).

30 20 10 0 degradation (%)/dB

MFCC + HMM (CD tri-phone) 51.9 47.8 41.5 20.7 1.04

MFCC + MLP (10 frames) 62.0 48.5 45.3 29.4 1.09

BFCC + RNN (1 delay) 71.6 67.2 61.9 39.8 1.06

BFCC + API (PAF) 69.0 67.8 60.6 38.0 1.03

BFCC + API (APF) 75.0 71.5 63.3 46.4 0.95

patterns, and it took advantage of the posterior probabilistic estimation by MLPs

at the frame level (Martin and Jurasfsky, 2008).

However, there remain a few issues in the current system. One issue is the

physiological specifications in the synthesizer, where the intrinsic properties of the

speaker are possibly over-generalized. For example, the physiological matrices M ,

K, & B in the tongue muscles require sophisticated modeling methods for realis-

tic approximation (Birkholz et al., 2011; Perrier and Ostry, 1996). Thus it will be

interesting to use the available articulatory recordings, e.g., the MOCHA-TIMIT

corpus, to monitor the articulatory-acoustic mapping in the computational model

(Wrench, 1999). Another issue is the use of higher level knowledge such as se-

mantics and syntactics in the neural model for recognition of complete word or

phoneme strings. Instead of Pr(Oi|Gk), the network output will need to estimate

the continuous probability, Pr(O1, O2, O2, · · · , OI |Gk), with consideration of the

contextual constraints.

5.6.1 Phoneme Recognition Accuracy

The results in this study agree with previous studies on the use of speech pro-

duction knowledge in ASR systems. Table 5.6 compares the phoneme recognition

accuracy of the API model with the existing recognizers on the TIMIT sentences.

Previously Jeon and Juang (2007) have used a set of 12 dimensional cortical

response patterns derived from a central auditory model in a HMM based recog-

nizer, which obtained lower phoneme accuracy than the MFCC baseline in clean
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testing. The system acquired certain degree of robustness in noisy conditions

with slower performance degradation over the MFCC baseline. Other auditory

inspired methods have also been successfully employed to exploit the use of au-

ditory features such as the adaption model proposed by Holmberg et al. (2006),

which obtained 46% relative word error reduction for clean speech training on

the AURORA 2 recognition task. Siniscalchi and Lee (2009) used a set of MLP

classifiers to extract the phonological AFs in a hybrid HMM/ANN recognition

system, where phoneme recognition accuracy on the TIMIT SX and SI sentences

was improved by 5.3% for clean testing. King and Taylor (2000) obtained 63.3%

phoneme accuracy using RNNs and AFs on the TIMIT sentences. Schuster and

Paliwal (1997) proposed a bidirectional recurrent neural network, which inte-

grated the forward RNN and the backward RNN to take into account all the

features available from the input frames in both directions. They obtained simi-

lar phoneme recognition accuracy on the TIMIT SX sentences ranging from 73.0%

to 75.5%, which is slightly higher than the proposed model. This may be partly

due to the fact that Schuster and Paliwal, like in most other studies, reduced the

original 61 phoneme labels to a compact set of 45 labels, which in turn reduced

the errors of some highly confusable phonemes, e.g., nasals. In the literature,

phoneme recognition accuracy as high as 75.6% has been reported on the TIMIT

database using the tandem MLPs with an adjustable neural structure (Schwarz

et al., 2006). The number of neurons in the hidden layer of neural networks was

increased until the PER saturated (Schwarz et al., 2006).

Table 5.6 summarizes the phoneme recognition accuracy of different ASR

systems on the TIMIT SX sentences, where the 39 dimensional MFCCs are used

at the front end and the accuracy of 45 phonemes are measured in the results.

The phoneme recognition accuracy for the proposed API recognizer is 74.4%,

shown in the last row of Table 5.6. The observation is that the performance of

ASR can be improved in several ways.

1. Increasing the number of Gaussian mixture (GM) in the HMM baseline: 40

GM (74.5%) vs. 16 GM (59.2%), (method 1 and 2). This is the conventional

method to improve ASR performance.
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2. Using NNs to replace the HMM (method 3). This is a paradigm shift,

where the best reported in the literature is the tandem approach: 75.6%,

slightly higher than the best HMM. A more interesting approach is using

RNNs to model the temporal dynamics of speech features implicitly instead

of using the FFNNs (or MLPs). The bid-directional RNN (method 4) ob-

tains phone accuracy of 73.0%, which uses both future and past recurrent

links/memories to optimize the capability of the paradigm. The perfor-

mance is reasonable, yet the input features are purely acoustic: MFCCs,

same as the HMM.

3. Using a hybrid HMM/NN approach (method 5), where NNs interpolate the

phone posterior of the HMM: HMM+MLP (64.8%). The system accuracy

is not as high as the 40 GM, but it improves the baseline 16 GM by 5.3%

absolute under the exact same testing condition, shown in row 5 of Table

5.

4. Using additional knowledge sources to improve the features representation

(method 5, 6, and 7). However, the pseudo-articulatory features (PAFs)

have shown promising results, when used in the hybrid HMM/NN and the

RNN framework, (method 5 and 6). Yet the improvement is usually limited.

In the literatures, the PAFs are first transcribed by the phonological rules

such as the manner and place of articulation of phones, then they are used

to rescore the HMM baseline or to calculate the phone posterior. In other

words, the amount of production knowledge is proportional to the phono-

logical codebook. They seem more reliable than the articulatory codebook

for the APFs. However, they may simply reduce to a redistribution of the

acoustic features during ASR.

5. The APFs in this study (method 7) are estimated from the acoustic signal.

In particular, the synthetic data after clustering is used for the acoustic-to-

articulatory mapping. The APFs offer a unified explanation using the two

aspects of the human speech: perception (BFCCs) and production (RATs).

There are mainly two types of contributions for ASR improvement in the above

methods: one is the different paradigms/algorithms (HMMs vs. NNs), the other
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is the use of speech production knowledge (MFCCs vs. PAFs and APFs). Ta-

ble 5.6 shows that the production knowledge is an important contributor to the

speech recognition performance gain, and the neural topology also plays a com-

plementary role to the proposed articulatory features. However, the phoneme

accuracy shows a bottleneck below 80%. This is not satisfactory compared with

human recognition performance, where current ASR systems usually apply syn-

tax and semantic rules to embed linguistic constraints for improved phoneme

accuracy. These will also interesting for future studies.

Table 5.6: Summary of phoneme recognition accuracy (%) on the TIMIT sen-

tences in the literature.

Structure Dataset Phoneme accuracy

1. HMM (40 GM per state) (Jeon and Juang, 2007) SX, SI 74.5

2. HMM (16 GM per state) (Siniscalchi and Lee, 2009) SX, SI 59.5

3. Tandem MLP (Schwarz et al., 2006) SX, SI 75.6

4. RNN (Schuster and Paliwal, 1997) SX 73.0

5. HMM+MLP (PAF) (Siniscalchi and Lee, 2009) SX, SI 64.8

6. RNN (PAF) (King and Taylor, 2000) SX, SI 63.3

7. API (APF) (Huang and Er, 2011) SX 74.4

5.6.2 Phoneme Error Patterns

The proposed neural model exhibits different phoneme error patterns. Table 5.7

reports the top and the bottom phoneme errors obtained by the HMM baseline

and the API model during the clean testing with SNR = 30dB. The acoustic

baseline has lower accuracy for the nasals and the fricatives than the articulatory

model. These phonemes have noise-like qualities which are difficult to distinguish

using the acoustic features (Scharenborg et al., 2007). There are fewer frame

labels for nasals: /eng, em/, fricatives: /f, z, s, sh/, and plosive closures: /dcl,

tcl/, compared to other phonemes, which introduces data sparsity during training.

In the HMM baseline, these phoneme results in either the highest or the lowest

error. In other words, their accuracy are highly variant in the acoustic baseline.
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The issue is less severe for the API model. Only few of the sparsely distributed

phonemes /eng, s, sh/ appear in the top or bottom errors. There are two reasons.

First, the 45 broad phoneme labels and the 255 narrow ones are mapped with the

13 APFs, so there are at least three times more frames in the training data for the

articulatory model. Second, the articulatory dynamics in the APFs contribute to

alter the phoneme error patterns. Previously the combined use of acoustic and

articulatory features have shown to utilize the two knowledge sources and improve

ASR performance (Huang and Er, 2011). However, the APFs are not without

restrictions, as evidenced by the high error rates of the liquids: /l, w/ and the

glottal sound: /hh/. The main issue is that the synthetic database generated by

the 2-D bio-mechanical system has difficulty in describing the complex tongue and

glottal movements. These phonemes require additional physiological parameters,

for example, in a 3-D or 2-D vocal tract with fricative excitation sources at the

specific tongue locations (Birkholz et al., 2007).

Table 5.7: Phoneme recognition accuracy (%) obtained by the HMM baseline

and the API model.

HMM API

Top 5 errors

eng 5.1 uh 19.0

uh 21.0 eng 21.6

em 27.0 l 26.9

ih 33.5 w 31.0

dcl 39.0 hh 32.5

Bottom 5 errors

ao 91.0 aa 89.8

f 92.4 ao 92.7

z 93.2 ch 93.3

sh 95.2 s 98.0

s 97.7 sh 98.5

Fig. 5.7 shows the phonetic analysis of an utterance extracted from the test

set, the consonant-vowel pattern “by” in the sentence “Jane may earn more money

by working hard” (SX4) by a male speaker (MAE). The upper panel shows the

recorded acoustic waveform. The middle panel shows the linear frequency (0 to
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3000 Hz) spectrogram after FFT before the non-linear mel or Bark scale warping.

The lower panel shows the broad and narrow phonetic annotations. In the narrow

annotation, the voiced plosive /b/ has three stages of articulation during the

consonantal onset: lip flapping [bv], vocalic silence [bc], and voicing [ba] followed

by the vowel sound. Similarly the diphthong /ay/ has two stages of articulation,

which are identified by the disappearance of the third formant from the /a/ to

the /y/ segments, shown in the narrow annotation as [aIa] and [aII]. Compared

with the broad annotation as used in the acoustic HMM baseline, the API model

embed more descriptive phonetic details in the narrow annotations. The details

enable the API model to infer the underlying articulatory dynamics for accurate

phoneme classification.

Fig. 5.8 shows three estimated APFs: JH, LLy, TBy, which are normalized

to the [0, 1] interval. The dashed lines represent the articulatory commands in

the synthetic training data, and the solid line represents the estimated APFs in

the API model. Abrupt articulatory movements are observed at cross sections

of the phonetic intervals. The step like shape resembles the binary PAFs, where

the presence/absence of a feature is denoted as 1/0 or +/− (King et al., 2007;

Scharenborg et al., 2007). However, for the continuous APFs there also exist in-

termediate values in Fig. 5.8, which give relative rather than absolute measures

as used in the discrete PAFs. The measure better describes the phonetic varia-

tions, since phonemes are usually articulated without reaching the final targets,

especially in continuous speech (Fang et al., 2009).

The API model calculates the probabilities of the output phonemes based

on the estimated APFs which are conditioned on the input acoustic features.

Besides the annotation details in the phonetic layer, BFCCs in the input layer are

competent in preserving the acoustic information in clean and noisy conditions.

Fig. 5.9 shows the mel and the Bark cepstrum. Consonant-vowel pattens are

the building blocks of English words and sentences. The coarticulation effects at

the consonant onset and at the vowel formants transition are visible in the two

cepstrums. In clean condition, the two types of acoustic features, MFCCs and

BFCCs, are closely matched along the time and the frequency-axes. Previous

experiments have shown that their performance were equivalent on the same

HMM recognizer (Huang and Er, 2012c). In noisy condition, white Gaussian
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Figure 5.7: The phonetic analysis of the consonant-vowel pattern /bay/ for the

word“by” in the natural speech corpus, the acoustic waveform (upper panel),

the linear frequency spectrogram (middle panel), and the broad/narrow phonetic

annotations (lower panel). The dotted vertical lines mark the phonetic boundaries

at t1 = 0.0387 sec, t2 = 0.0583 sec, t3 = 0.0723 sec, and t4 = 0.1313 sec.

with SNR = 15 dB, the Bark filters give slightly better amplitude compression

than the mel filters in the plosive closure interval (t1 − t2), as seen by the white

squares in Fig. 5.9.

5.7 Summary

This chapter describes the neural based API model, which retrieves and uti-

lizes the production knowledge based APFs to improve speech recognition per-
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5.7 Summary

Figure 5.8: Three estimated APFs: JH, LLy, and TBy in the API model (solid

line). The dashed lines represent the articulatory configurations in the synthetic

corpus.

formance. It also generates the synthetic corpus with the articulatory-acoustic

mapping information using the biomechanical speech synthesizer. The perfor-

mance of the inversion module is evaluated on the synthetic and the natural

speech data. Initial results indicate that the inversion module obtains accurate

articulatory estimates. The phoneme recognition performance demonstrates that

the API model are more competent in modeling highly variant phonetic events

than the HMM baseline. It outperforms the acoustic HMM baseline with im-

proved speaker independence and noise robustness. Furthermore, the API sys-

tem is tuned with the same set of speech data in an off-line learning mode before
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Figure 5.9: Comparison of the mel and the Bark-scale cepstral measures on the

/bay/ sound: (b) & (c) in clean and (e) & (f) in noisy condition, added white

Gaussian with SNR = 15dB, respectively.

on-line testing. Thus portability and computational efficiency are another two

salient properties of the proposed neural model.
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Chapter 6

Conclusion

Speech processing technology continues to fascinate engineers and researchers in

human-machine interaction. It leads to many promising grounds as well as chal-

lenging tasks (Juang and Furui, 2000). The use of production knowledge in speech

recognition is one such task. This work describes a method with three stages to

embed the articulatory phonetic features for improved speech recognition. First

the neural controller in Chapter 3 tracks the articulatory movements of the hu-

man vocal tract and infers the activation patterns of the underlying muscular

structures. It is able to manipulate the mass-spring based elastic tract walls in a

2-D articulatory synthesizer to realize speech motor control and to reproduce the

articulatory-acoustic mapping of English phonemes. It achieves high accuracy

during on-line tracking of the vocal apparatus in the simulation of consonant-

vowel sequences. Next the non-uniform segmentation method is used in Chapter

4 to build the English pronunciation models. The broad phoneme forms and the

narrow phonetic forms are used to annotate the variations in the acoustic signal.

Experimental results show that the articulatory feature space presents a much

smaller variance than the acoustic feature space. Finally the neural base articu-

latory phonetic inversion (API) model is implemented in Chapter 5. The model

retrieves the articulatory phonetic features (APFs) from the acoustic features. It

achieves improved recognition accuracy and robustness in two diverse conditions:

with different speakers and in noisy environments.

Compared with the existing phonological articulatory features (PAFs) which

are derived from the broad linguistic definitions, e.g., manner of articulation
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(MOA) and place of articulation (POA), as used in (Frankel et al., 2007; Kirch-

hoff et al., 2002; Siniscalchi and Lee, 2009), the proposed APFs use a more reli-

able heuristic mapping strategy to retrieve the pronunciation details on a set of

hand-labeled sentences. The proposed API approach roots in the concept that

the speech sound occupies a spread region, rather than isolated points, in the

auditory and the articulatory domain (Damper and Harnad, 2000; Kielar et al.,

2011; Mottonen and Watkins, 2009). What differs this study from others is the

unified explanation of speech events in the production and the perception do-

mains. The proposed neural module distinguishes the phonetic base-forms from

the surface-forms, i.e., the pronunciation variations of English speech. It use

two knowledge sources that are not present in conventional classifiers, which are

analogous human speech processing, i.e., the listener-oriented maximization of

auditory discriminations and the speaker-oriented minimization of articulatory

effort.

In addition, the research work addresses the non-uniqueness and the non-

linearity issue in the inversion experiments by incorporating the production knowl-

edge at three places. First, in the control model (cf. Chapter 3), the bio-

mechanical synthesizer approximates the human anatomy in physiological and

functional properties of speech production. Second, in the pronunciation model

(cf. Chapter 4), the heuristic learning algorithm mimics the experience of human

speech acquisition. Third, in the inversion model (cf. Chapter 5), the data clus-

tering algorithm minimizes the within-class scatter distance and maximizes the

across-class scatter distance in the synthetic data, which is also analogous to the

categorical nature of human speech perception.

6.1 Recommendation for Further Research

Much remains to be done in speech recognition as well as in articulatory synthesis.

One near goal is to design a fully functional articulatory speech synthesizer, as

shown in Fig. 6.1. At present there are few synthesis systems which accommodate

both the articulatory and the acoustic modules, even fewer which include a control

module. The adaptive control model presented in this thesis is a first step toward
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Figure 6.1: Information flow in a fully functional TTS system with the adaptive

controller.

an automatically controlled and self-tuned articulatory synthesizer. When using

the adaptive controller for TTS synthesis, the phone sequence, the speaking rate,

and the prosodic information need to be specified by the adaptive controller

to generate the corresponding articulatory trajectories. It can also include an

auditory feedback mechanism to perceive the above acoustic signals like a human

listener.

Another future goal is to design an improved speech recognizer that not only

generates the best word string but also outputs a set of multiple hypotheses that

can be represented as a word lattice or an n-best list. It is often observed that

human speech recognition is more dependent upon linguistic knowledge, con-

text information and other post-recognition processing than previously supposed

(De Mori et al., 2008). This may as well explain the superiority of human speech

recognition compared to machine based systems. When lattices of word hypothe-

ses are generated, it is likely that the uttered words are somewhere in the lattice,

making it possible to obtain coherent semantic hypotheses from these hypothe-
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ses. Fig. 6.2 shows one such system. Using semantic parsing, word hypotheses

can be dynamically attached to non-terminal symbols For example, Fig. 6.3

demonstrates a ticket query system using the speech recognizer and a semantic

parser. The semantic parsing tree in Fig. 6.3 uses node and hierarchical links

with extension scores, which are based on the assumption that sentences that

are grammatically correct. For context-dependent applications, e.g. the flight

inquiry, it is important to use confidence measures that integrate information

related to the whole dialog context rather than just the acoustic signal. These

will be interesting for future research.

Figure 6.2: Structure of the improve ASR system.
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Figure 6.3: Semantic parsing in an information retrieval system.
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