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Abstract

This paper presents a deep neural network (DNN) approach
to sentence boundary detection in broadcast news. We extrac
prosodic and lexical features at each inter-word positiothe
transcripts and learn a sequential classifier to label tpese
sitions as either boundary or non-boundary. This work i& rea
ized by a hybrid DNN-CRF (conditional random field) architec
ture. The DNN accepts prosodic feature inputs and non4liypea
maps them into boundary/non-boundary posterior prokigbili
outputs. Subsequently, the posterior probabilities anetined

with lexical features and the integrated features are neodey

a linear-chain CRF. The CRF finally labels the inter-word po-
sitions as boundary or non-boundary by Viterbi decoding- Ex
periments show that, as compared with the state-of-thBRrt
CRF approach [1], the proposed DNN-CRF approach achieves
16.7% and 4.1% reduction in NIST boundary detection error in
reference and speech recognition transcripts, respictive

Index Terms: sentence boundary detection, structural event de-
tection, deep neural network, rich transcription

1. Introduction

Adding punctuation makes speech recognition outputs more
readable and easier for downstream speech and language task
such as parsing, machine translation and question angyerin
Sentence boundary detection aims to discover sentencelboun
ary positions in an audio stream or in a word transcript pro-
vided by a speech recognizer. We usually formulate this task
as a binary classification problem which decides if a candida
position, e.g., inter-word in a text or a salient pause inati@a
stream, should be marked as a sentence boundary.

In order to train a boundary classifier, previous approaches
have explored lexical and prosodic features on both referen
transcriptions (REF) and speech recognition outputs (ASR)
Nicola et al. [2] studied various lexical features, inchglian-
guage model features, sentence length features and syatax f
tures, on different genres ranging from formal newspapsr te
to informal, dictated messages, and from written text to- spo
ken transcript. Recent efforts have shown that speech gypso
especially pause and pitch related features, are infovenatdi-
cators for structural events [1, 3, 4, 5] including sentermend-
aries [6, 7, 8, 9]. Research has shown that a decision treg (DT
model learned from prosodic features can achieve comgarabl

performance with that learned from lexical features.

State-of-the-art sentence boundary detection systems usu
ally use features from different knowledge sources. Shgiee
al. [6] integrated both prosodic and lexical features byasien
tree - hidden Markov model (DT-HMM) approach. They first
modeled prosodic features using a DT, and the boundary/non-
boundary posterior probabilities from the DT were subse-
quently combined with lexical features in an HMM. Decoding
using the HMM results in boundary and non-boundary predic-
tions. The HMM approach has a clear drawback that it max-
imizes the joint probability of observed and hidden eveats,
opposed to maximizing the posterior probability that wolodd
a more suitable criterion to the classification task. Rdgent
conditional random fields (CRFs) have been used in sentence
boundary detection and punctuation prediction tasks [111]
As compared with the HMM generative approach, CRF lever-
ages the global sequential information and estimates thepo
rior probabilities in a discriminative way. Liu et al. [1]@posed
a DT-CRF approach. Similar to with the DT-HMM approach,
the posterior probabilities from the DT prosodic model wiere
tegrated with lexical features in a linear-chain CRF, wHath
to state-of-the-art sentence boundary detection perfocma

In this paper, we present a deep neural network (DNN) ap-
proach to sentence boundary detection in broadcast news. In
the past several years, DNN and deep learning methods have
been successfully used in many tasks, such as speech recogni
tion [12], word segmentation [13, 14], part-of-speech tagg
and chunking [15]. A DNN learns a hierarchy of nonlinear fea-
ture detectors that can capture complex statistical pett&ach
layer in the DNNs nonlinearly transforms its input repreaen
tion into a higher level, resulting in a more abstract repnés-
tion that better models the underlying factors of the dataur
approach, we first model prosodic features using a DNN that
accepts prosodic feature inputs and results in boundary/no
boundary predictions with posterior probabilities on thepait
layer. As compared with the prosodic DT approach [6], a 3-
hidden-layer DNN achieves about 11% relative NIST bound-
ary detection error reduction in both REF and ASR broadcast
news transcripts. Following the DT-CRF approach, we then in
tegrate the posterior probabilities from the prosodic DNithw
the lexical features in a linear-chain CRF, namely the DNN-
CRF approach. Experiments show that, as compared with the
state-of-the-art DT-CRF approach [1], the proposed DNN-CR
approach achieves 16.7% and 4.1% reduction in NIST boundary
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Figure 1: Architecture of the DNN-CRF approach for sentence
boundary detection.

detection error in reference and speech recognition trgotsc
respectively.

In the following section, we describe our DNN approach
for sentence boundary detection. After that, we introdiee t
prosodic and lexical features in Section 3. Section 4 dessri
the experiment setup for sentence boundary detection. We re
port and analyze the experimental results in Section 5.llgina
conclusions are drawn in Section 6.

2. The Proposed Approach

Figure 1 depicts the architecture of the proposed DNN-CRF
approach for sentence boundary detection. The archieectur
composed of a DNN for prosodic modeling and a linear-chain
CRF for sequential boundary/non-boundary labeling based o
combined lexical features and DNN posterior probabilitids
each inter-word region across the broadcast news trahdesip
ical and prosodic features are extracted and hidden event se
quenceF is decoded as boundary or non-boundary by the CRF.
A DNN is actually a multi-layer perceptron (MLP), i.e., a
feed-forward neural network model that maps sets of inptat da
onto a set of outputs. In our case, the input and output are
prosodic features and boundary/non-boundary posteris-pr
abilities, respectively. A DNN can be considered as a hierar
chical feature learner with a nonlinear transformation dcte
hidden layer which refines the input representation to ebett
one. Each hidden layer takes in the activatibps of the pre-
vious layer and computes new activatidnsfor the next layer
via a nonlinear transformation using a weight ma¥% and a
bias vectorb, followed by an activation functiorf; (-):
hi = fi(Wihi—1 + by), for 1 <1< L. 1)
WhereL is the number of hidden layers. In this paper, we use
sigmoid activation functions for hidden layers. The outpyer
adopts a softmax function to predict the posterior prolitésl
for each of the classes (boundary and non-boundary) given th
input observation (prosodic features) using a weight maai,,
and a bias vectdby,.
The posterior probabilitie® (E|F'p) are further combined

with lexical featuresF', and the combined feature sequelize
are modeled by a linear-chain CRF. The CRF integrates differ
ent knowledge sources in a discriminative way and leverages
the sequential and contextual information. A CRF defines a
conditional probability distributionP?(E|O) of corresponding
label sequencé& given input observation sequen€e[16]. In

this work, E' corresponds to a boundary/non-boundary event se-
quence. The most likely label sequertéor given observation
Ois:

E = argmax P(E|O)
E
@)

K
B YR X))
E > pexp(Xy Ak * Fi(E,0))

whereFy (E, O) is a feature function over the labels and obser-
vations. The index¥ indicates different feature function, each
of which has an associated weight. For an input sequence
and a label sequendg, Fi(E, O) is defined as:
Fi(B,0) =Y fx(E,0,1) 3
wherei is the index over all the input positionsf, (E, O, i)
is the feature function at positiarover the label sequence and
observation sequence.

The CRF model assigns a well-defined conditional prob-
ability distribution over possible labels on a given tramiset,
trained by the maximum likelihood criterion. Its loss fubctis
convex that guarantees convergence to the global optimte. T
Viterbi algorithm is used to find the most likely label seqoen

When fk(E, 0O, 7,) = fk(Ei,N, vy Biy Oizpgy ooy O,y ’i),
an N-order linear-chain CRF, which model® (E =
E;_n,..., E;) sequence labels amtl (O = Oi_u, ..., 0y)
context features in the feature set, is formed. In pracfices 1
andM = 1 are usually used because of the exponential increase
of computational cost for highe¥ and M.

3. Feature Extraction

3.1. Prosodic Features

Speech prosodic cues, e.g., pitch, energy and duration, are
known to convey structural information. Previous studiageh
shown that they play important roles in boundary percep-
tion [17, 18, 19]. In our study, we consider the inter-word po
sitions across a broadcast news transcript as boundary-cand
dates and collect a rich set of 162 prosodic features in thmau
stream corresponding to the candidate positions accortding
the method in [6, 20]. Please refer to [6, 20] for feature ex-
traction details. Among the features, pause and word durati
features are used to capture prosodic continuity and boynda
lengthening phenomena. We also extract pitch and energy re-
lated features that reflect the pitch/energy declinatiahraset
phenomena. These features have been shown as primary cues
for sentence boundary detection [1, 6, 8]. In broadcast hews
as speaker turn is a significant boundary cue, we also include
speaker turn as a feature.

3.2. Lexical Features

According to [1], we extract lexical features that include N
grams of word, part-of-speech (POS) tag and syntactic chunk
tag. It is well-known that the lexical context of sentenceitd-

ary is important for boundary detection. In order to capthee



word context of sentence boundary, we use word N-grams (up
to 5) features, i.eX wi >, < wi—1,w; >, < Wi, Wir1 >, <
Wi—2, Wi—1, Wi >, < Wi—1, Wi, Wit+1 >, < Wi, Wit1, Wit2 >
and < w;—g, w;—1,w;, wi+1, wi+2 >, Wherew; refers to the
word before the boundary of interest. Each sentence is con-
strained via syntactic structure. Therefore, syntacts {@.g.,
POS and Chunk) constitute a prominent knowledge source for
sentence boundary detection. In this paper, we use the SENNA
parser [15] to obtain the POS sequenggdnd the chunk se-
qguence ¢) given a word stream. The IOBES tagging scheme
is used for chunking so as to map the word sequence to chunk
stream exactly like POS. POS and chunk features are designed
similar to those in words, replacing; with tagsp; andc;.

4. Experimental Setup

We evaluate the performance of sentence boundary detection
using our proposed approach on English broadcast news (BN).
The BN data comes from NIST RT-04F and RT-03F MDE eval-
uation®. The released corpora from LDC only contain the train-
ing set of the evaluations (about 40 hours). In order to kegp o
experimental configuration (hours of training data) as lsimi

as possible to [1], we extract 2-hour data from the RT-04F re-
leased data as the testing set. Another 2-hour data isselest

the development set for parameter tuning. The rest of the dat
(36 hours) is used as the training set. Meanwhile, we repeat
the state-of-the-art method in [1] with our experimentah-co
figuration as a comparision. The sentence boundaries in refe
ence transcripts (REF) are annotated according to the @nnot
tion guideline [21]. The recognition outputs (ASR) are gene
ated from an in-house speech recognizer with a word errer rat
of 29.5%. In the data, about 8% of the inter-word positiores ar
sentence boundaries.

For the sentence boundary detection task, we train all the
models using REF transcripts, and evaluate the models ¢n bot
REF and ASR transcripts. Evaluation across REF and ASR
transcripts allows us to study the influence of speech reeogn
tion errors. Evaluation metrics include precision, rechfl-
measure and the NIST SU error rate. The SU error rate is de-
fined as the total number of inserted and deleted boundaries d
vided by the number of real boundaries. We calculate SU error
using the official NIST evaluation todls

The prosodic DNN is trained in a greedy layer-wise su-
pervised training way [22, 23]. We start with 1-hidden layer
neural network that maps prosodic features into boundany/n
boundary posterior probabilities. After the network isnesl,
treat the output of the hidden layer as new features and train
another 1-hidden layer network to predict the boundary/non
boundary posteriors. The procedure can repeat until the de-
sirable number of hidden layers are reached and finally, a fine
tuning of the whole network is performed. The training is im-
plemented by using stochastic gradient descent (SGD) and th
minibatch size is 256 shuffled training samples. As our train
data size is small, to prevent overfitting2 weight decay is
set t00.00001. Furthermore, the system development data is
split into training data and validation data. Network tragis
stopped once the error on the validation data starts toasete

We compare the DNN-CRF approach with the DT-CRF ap-
proach [1] that obtains state-of-the-art performance. A5C4

1LDC2005S16, LDC2004S08 for speech data and LDC2005T24,
LDC2004T12 for reference transcriptions
2See http://www.itl.nist.gov/iad/894.01/tests/rt/ 2@/

decision tree is built using the WEKA toolkit based on the
prosodic features. The DT posteriors are combined with the
lexical features by a CRF sequential labeler. For our DNN-CR
approach, similarly, we use a CRF to combine the DNN pos-
teriors with the lexical features. The CRF++ toolkit is ued
CRF implementatiofi. Because the toolkit can only handle dis-
crete features, we follow [1] and quantize the posteriobphil-

ities into several binsf0, 0.1], (0.1,0.3], (0.3,0.5], (0.5, 0.7],
(0.7,0.9], (0.9, 1].

5. Results and Discussion

5.1. Resultsof Prosodic DNN

In this section, we evaluate the performance of the DNN model
in sentence boundary detection only using prosodic festure
with different hidden layers and number of hidden units. For
clarity, we only use NIST SU error rate as the evaluatioreerit
rion. Figure 2a shows the effects of using different numioérs
hidden layers in a DNN. We can see that, on the REF transgripts
the NIST SU error rate obtained by DNN is much lower than
that obtained by DT. In addition, the SU error rate decreases
with the increase of network depth until 3 hidden layers. The
result of DNN with 3 hidden layers and different number of-hid
den units is drawn in Figure 2b. Best performance is obtained
when the number of hidden units is set to 80. In summary, the
best DNN setting is 3 hidden layers each with 80 nodes and we
will always use this setting in the following experiments.

Table 1: Experimental comparison of the prosodic DNN and
prosodic DT approach. Results are reported using PredBipn
Recall (R), F1-measure (F1) and NIST SU error rate (NIST).

| Transcript | Approach| P/R/F1(%) [ NIST (%) |

REE DT 78.8/56.3/65.7 58.8
DNN 86.9/56.5/68.5 52.1
ASR DT 70.6/56.7/62.9 67.0
DNN 74.3/61.7/67.4 59.7

Table 1 summarizes the results of DT and DNN in both REF
and ASR test conditions. From the table, we can observe that
the prosodic DNN significantly outperforms the prosodic DT i
both REF and ASR conditions (significantiatc 0.05 [24] for
SU error rate). As compared with the prosodic DT approach,
DNN achievesl1.4% and 10.9% relative NIST SU error re-
duction for REF and ASR conditions, respectively. The perfo
mance gain is mainly attributed to the DNN’s ability to learn
prominent representations from a large raw feature seugffro
several non-linear transform stages. We also notice apaser
of SU error rate for both DT and DNN on ASR transcriptions.
This is mainly because the word errors in recognition owwput
affect the prosodic feature extraction. For example, thengr
word timing information misleads the prosody extraction re
gion, since we choose the inter-word boundary as the candi-
dates. However, we observe that DT suffers more from the
recognition errors than DNN. This may indicate that DNN is
more robust in processing the imperfect prosodic features.

3Available at: http://www.cs.waikato.ac.nz/ml/weka/inchtml
4Available at: https://code.google.com/p/cripp/
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Table 2: Experimental comparison between DT-CRF and DNNF@RREF and ASR conditions.

Aoproach Information Source REF ASR

PP Cexical [ Prosodic PIRIFL(%) [ NIST(%) | P/RIFL(%) [ NIST(%)
DT-CRF[1] DT Posterior | 81.4/73.9/77.4] 431 | 906/495/640] 556
DNN-CRF | Word-POS-Chunkl \n\posterior | 85.9/76.7/81.0 359 | 950/493/649| 533

5.2. Resultsof DNN-CRF

Table 2 shows the performances of DT-CRF and DNN-CRF,
both combine the lexical features with prosodic posteriobp
abilities. The results show that combining lexical and pdis
information generally results in better performance. Weslbe

the significant performance gain comes from two aspectst, Fir
lexical features, especially POS and Chunk features, ane ve

systems, the final F1 measure is not improved much. In the
future, we will focus on improving the recall of the DNN-CRF
system when using ASR transcripts with high word error rate.

6. Conclusion

We have proposed a deep neural network approach for sentence
boundary detection in broadcast news. In our approach, ste fir

helpful in sentence boundary detection because the POS and use a DNN to model prosodic features extracted at each inter-

Chunk information reflects the syntactic structure of asects.
Second, CRF effectively leverages the sequential infdonaén

word positions in the broadcast news transcripts. The plioso
DNN achieves significant performance gain as compared with

sentence boundary detection. There is one case where adding the DT approach. Subsequently, we use a CRF to combine the

lexical features leads to worse results, i.e., the recaleatence
boundaries is reduced to around 49% when ASR transcripts are
used. At the same time, precision is increased dramatitally
above 90%. From these two results, we can conclude that the
using of imperfect ASR transcripts leads to significantlyreno
missing sentence boundaries. Word recognition errors nigy m
lead the POS and Chunk tagging, and the prosody model is also
affected since the prosodic features are extracted witkifapt
word transcripts.

Another observation is that DNN-CRF always outperforms
DT-CRF. However, the improvement on REF transcripts (from
43.1% to 35.9% SU error rate, i.6.6.7% relative reduction)
is much larger than the improvement on ASR transcripts (from
55.6% to 53.3%, i.e.4.1% relative reduction). Although the
improvements are both significant & 0.01 for REF, andp <
0.05 for ASR), the results show that we have less gain from
DNN prosodic model when ASR transcripts are used. Possible
reason could be the high word error rate (29.5%) of our ASR
system. Comparing the precision and recall obtained froR AS
transcripts, DNN-CRF obtained better precision (95.0%nth
DT-CRF (90.6%). However, as the recall is very low for both

posterior probabilities from the prosodic DNN with extredt
lexical features. The CRF finally labels the inter-word fgioss

as boundaries or non-boundaries. Experiments show that the
proposed DNN-CRF approach outperforms the state-of+the-a
DT-CRF approach [1] by a large margin. Future work goes in
two directions. First, as DNN has shown its superior perfor-
mance in multi-task training [25], we plan to explore itsléi

in multilingual sentence boundary detection. Second, vae pl
to test different neural networks, e.g., convolution neuk-
works (CNN) [26] and recurrent neural networks (RNN) [27],
in sentence boundary detection.
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